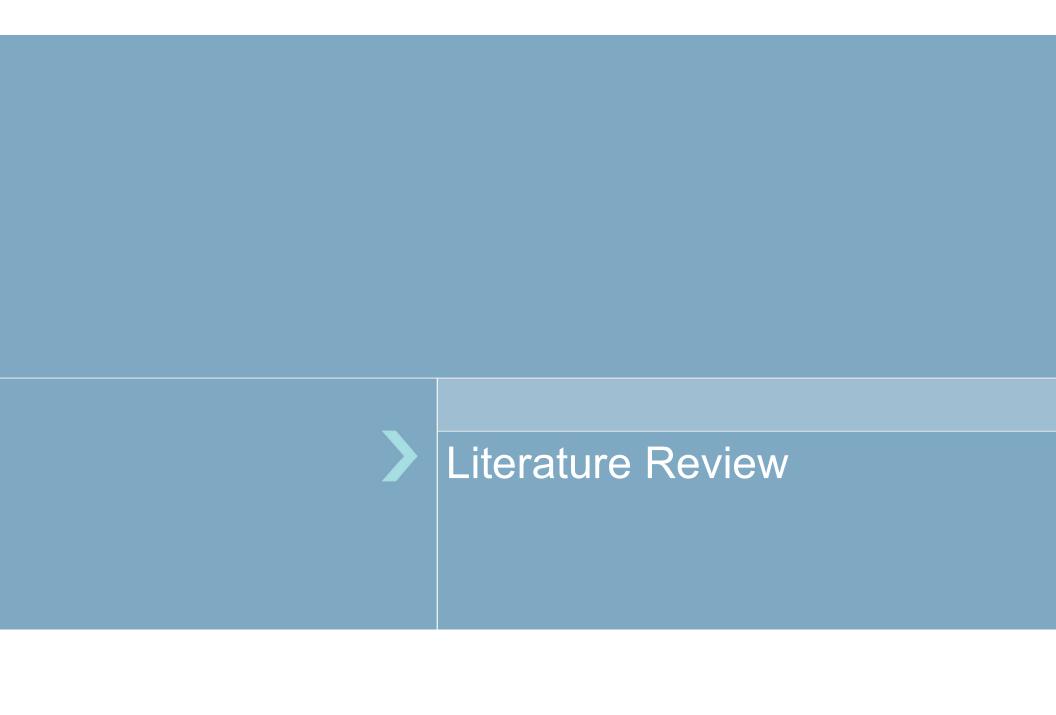

Author: Max Saber, MS

Chairperson: Kit Simpson, DrPH Committee: Daniel Brinton, PhD

Annie Simpson, PhD

Doctoral Project Defense Doctorate of Health Administration College of Health Professions

Background and Need


- The population of the United States is aging with the life-expectancy of elderly individuals also increasing
- Thus, Medicare must serve:
 - More patients with chronic conditions who require medication management, and
 - More frail patients needing multiple medications for comorbid conditions.
- Studies have found that 60% of elderly patients take 5 or more medications, while 20% of elderly patients take 10 or more medications
 - Elderly patients taking 10 or more medications are at a 6x increase of experiencing a fall
- Many medications routinely used in younger patients are not safe for the elderly
- The Beers Criteria contains more than 27 drug classes which are NOT recommended for use in older patients

Background and Need

- Studies exist confirming a relationship between the use of Beers Criteria medications and risk of falls, fractures, confusion, and delirium with unplanned hospitalizations in elderly populations
- Cognitive impairment, multimorbidity, and medication related balance and gait problems are just a few of the common medication side effects
- Commonly used medication may place patients at risk for fall or delirium events:
 - Benzodiazepines leading to falls and fractures, and
 - Diphenhydramine leading to confusion and delirium
- Falls are one of the leading causes of injuries, fractures, and unplanned hospitalizations in the elderly linked to prescription medication use
 - Aside from physical effects, there are a number of psychological effects on the patient that also occur with falls
 - Because of the large number of medications which can cause balance and gait problems, medication management is the most manageable risk intervention

Literature Review, Falls and Fractures in the Elderly

Weiner et al. 1998:

Elderly patients using CNS-active medications were at a higher risk of fall from those not

Neutel et al. 2002:

- Elderly patients taking multiple drugs were at a higher risk of experiencing an injurious fall
- Patients starting a new benzodiazepine or antipsychotic prescription were at a *very high* risk of injurious fall

Tinetti et al. 2006:

- Healthcare expenditures for a single fall event, \$24,330
- Overall healthcare burden caused by falls in patients ≥65 years old, \$5.7 billion

Hammond and Wilson, 2013

Polypharmacy has been independently linked to falls in elderly individuals

Literature Review, Falls and Fractures in the Elderly

Gelbard et al. 2014:

- 72.5% of elderly patients that experienced an injurious fall had at least one comorbidity
- Non-ground level falls are typically cause more injury and lead to a longer length of stay

Ambrose et al. 2015:

 Falls account for 87% of fractures in the elderly associated with impaired balance and gait, polypharmacy, and a prior history of falls

Chiu et al. 2015:

 Patients with an anxiety diagnosis were 4.7 times more likely to experience a fall than those without

Allali et al. 2017:

GOOD Initiative: "Gait, cOgnitiOn, and Decline"

Literature Review, Benzodiazepine Use in the Elderly

Ray et al. 2000

Greatest risk of falls in the elderly occur within the first seven days of a new benzodiazepine prescription (OR = 2.96) but remain elevated after

Bogunovic and Greenfield, 2004

Benzodiazepines usage in the elderly may contribute to psychomotor impairment increasing the risk of falls and automobile accidents for elderly that may still operate motor vehicles

Kragh et al., 2011

Fall-Risk Increasing Drugs

Puustinen et al., 2011

BZD usage in the elderly was found to be associated with dizziness, a reduced ability to walk, and shorter nighttime sleep

Literature Review, Confusion and Delirium

Morrison et al., 2003:

A study of 541 hip fracture patients found those who received opioid analgesics post-surgery were at a 2.4 higher risk of developing delirium than with other analgesic medications

Puustinen et al., 2011

Use of opioids and the concurrent use of opioid and benzodiazepine medications were all associated with cognitive decline in the elderly population

Hein et al., 2014

25% of community-dwelling elderly individuals developed delirium on hospitalization, polypharmacy increased this risk by 2.3x

Kalisch Ellett et al., 2016

Opioids are overused and used inappropriately in the elderly population – risk of delirium related hospitalizations in community-dwelling elderly was 2.4x greater with the use of 2 or more CNS-acting medications

Literature Review, Confusion and Delirium

Swart et al. 2017:

- Research in the area of opioids and delirium in the elderly is limited and should be further investigated
- This research should include a comparative investigation between the different types of opioids and their effect on delirium in the elderly

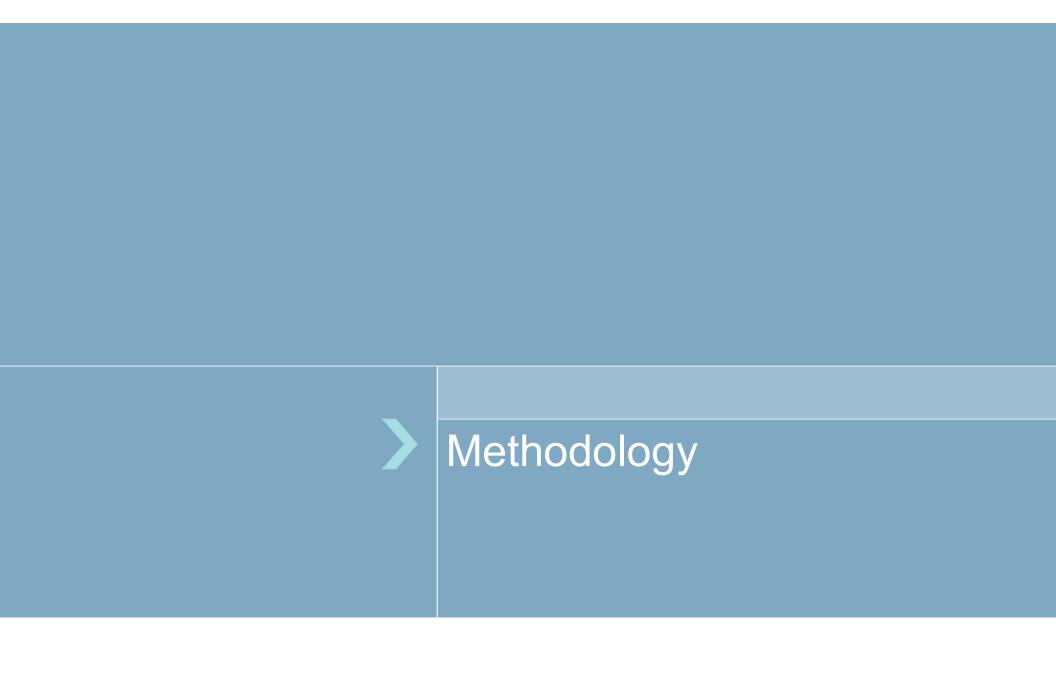
Motter et al. 2018

Anticholinergic drugs appear on 16/22 potentially inappropriate medication lists

Mueller et al. 2018:

 Cognitively-impaired elderly individuals using more than 4 medications had an increased risk of unplanned emergency department visits

Problem Statement


 However, studies have <u>not</u> compared well-matched groups of patients who were exposed and not exposed to drugs affecting balance and cognition with the risk of admissions for falls, fractures, confusion, or delirium, while still controlling for other Beers Criteria medications, frailty, and comorbid conditions.

Research Questions

Two research areas we will examine specifically are:

- 1. Admissions for falls and/or fractures in patients taking medications on the Beers Criteria which are not recommended because of their effect on balance and gait, and
- 2. Admissions for confusion and/or delirium in patients taking medications on the Beers Criteria which not recommended because of their effect because on cognition and a person's ability to live independently.

Study Design and Sample

- This is a retrospective cohort study using propensity-score matched patients in an exposed and non-exposed group
- The Beers classification and propensity-score matching was performed by Roland (2018), as follows:
 - Data was selected and extracted from the 2013 Truven Marketscan® Administrative
 Claims database
 - Individuals were required to be ≥65 years old and living independently,
 - PIM use was identified by the presence of a medication listed on the 2012 revision of the AGS Beers Criteria, and
 - For inclusion in the "experimental" arm of the study, patients were required to have been prescribed a PIM in the timeframe of 1/1/2013 to 3/31/2013

Dataset

- This study uses an augmented version of the dataset from Roland (2018)
- Data augmentations performed for the purposes of our study:
 - Data extraction for hospital admissions and ED visits for falls and delirium, and
 - Creation of drug sub-group specifications for:
 - Medication classes associated with falls,
 - Medication classes associated with delirium and confusion, and
 - A residual group named "other Beers drugs"
- The final dataset contained 2,595,254 patients;
 - Patients who took any Beers Criteria medications in Q1 2013 (n = 1,297,627), and
 - Patients taking no Beers Criteria medications in Q1 2013 (n = 1,297,627)

Definition of Variables

The dataset matching and control variables includes:

- Patient demographics (age, gender, geographic region, # insured days/year),
- Charlson Comorbidity indicators,
- 26 of 29 Elixhauser Comorbidity indicators,
- Frailty measure indicators, score, and categories,
- Beers Criteria medication classes (# of Rxs and Rx days), and
- Hospital admission information (# of admissions, length of stay, total cost, inpatient cost, outpatient cost, and Rx cost)

Beers Criteria Categories

Falls and fractures:

- Antipsychotics,
- Barbiturates,
- Benzodiazepines,
- Sedatives,
- Tricyclic antidepressants, and
- [Other Beers, No Beers]

Delirium and confusion:

- Antihistamines,
- Antipsychotics,
- Benzodiazepines,
- Narcotics, and
- [Other Beers, No Beers]

Inclusion Conditions

Falls and Fractures:

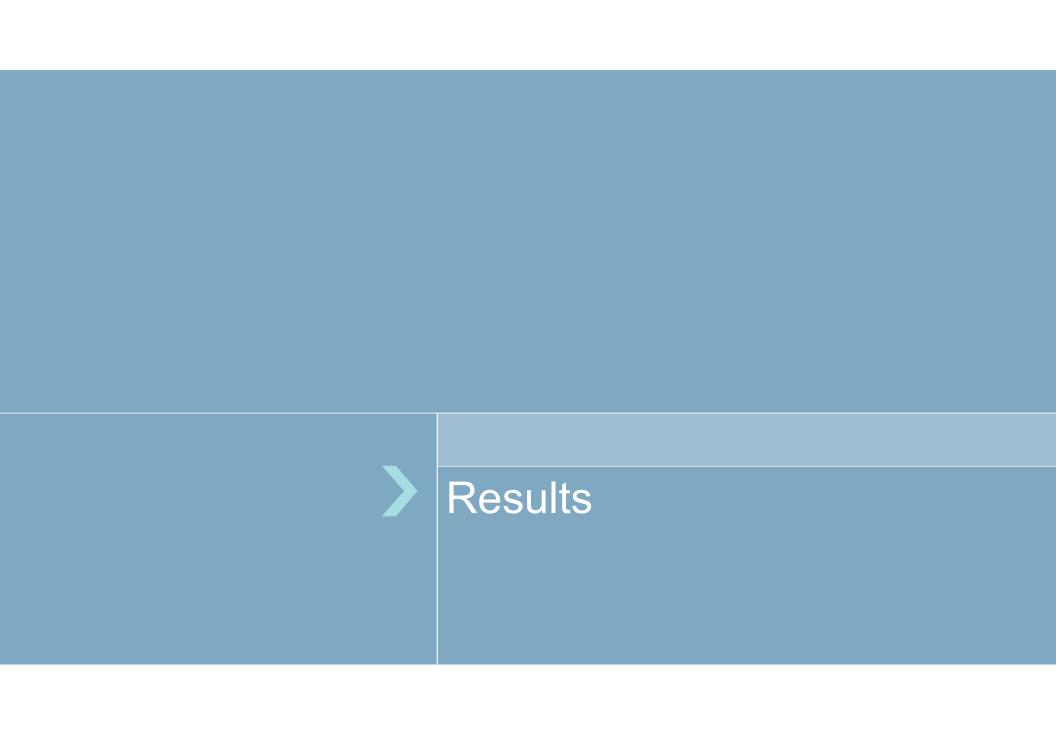
- Accidental falls involving:
 - Stairs or steps (E880)
 - Ladders or scaffolding (E881)
 - From/out of a building/structure (E882)
 - Holes or other surface openings (E883)
 - One structure level to another (E884)
 - Slipping, tripping, or stumbling (E885)
 - Collision, pushing, or shoving, by or with another person (E886)
 - Fracture, unspecified (E887)
 - Other fall, unspecified (E888)

Delirium:

- Admissions involving:
 - Drug-induced delirium (292.81)
 - Delirium, other known cause (293.0)
 - Subacute delirium (293.1)
 - Reactive confusion (298.2)
 - Psychosis, unspecified (298.9)
 - Hallucinations (780.1)
 - Altered mental status (780.97)

Analysis

Statistical analysis compared the presence of any Beers Criteria medication (categorical by medication class) and the absence of any Beers medications


Descriptive statistics:

- Pearson Chi-square tests will be used for the comparison of categorical variables
- T-tests were used for the comparison of normally distributed continuous variables and Mann-Whitney U/Wilcoxon nonparametric tests for non-normally distributed continuous variables

Multivariable modeling using logistic regression was used to compare the risks of falls and fractures, and delirium and confusion admissions

The total expenditure cost was compared using a gamma-distributed, log-linked multivariable model to accommodate the distribution of the total cost data

Our Patient Sample

	Patients without Beers Medications	Patients with Beers Medications
Age, years	74.06 ± 6.9	73.93 ± 6.8
Female	750,416 (57.8%)	757,171 (58.3%)
Charlson Score	0.07 ± 0.5	0.09 ± 0.6
Frailty Score	0.353 ± 2.2	0.451 ± 2.4
Length of Stay, days	6.11 ± 9.4	6.63 ± 9.8
Delirium Admissions	25,727 (2.0%)	43,117 (3.3%)
Falls Admissions	26,255 (2.0%)	32,725 (2.5%)
Total Treatment Costs	\$ 8,580 ± 30,962	\$ 14,987 ± 36,033

Data expressed as mean \pm standard deviation (SD) or otherwise indicated as Number (%). All differences significant at α = 0.05. n = 2,595,254

Characteristics of Falls and Fractures Patients

	Patients without Falls Admissions	Patients with Falls Admissions
Age, years	73.91 ± 6.8	77.52 ± 7.1
Female	1,468,759 (57.9%)	38,838 (65.8%)
Charlson Score	0.08 ± 0.6	0.19 ± 0.8
Frailty Score	0.37 ± 2.3	1.78 ± 3.5
Length of Stay, days	6.32 ± 9.6	7.84 ± 10.7
Fall Drug Days	0.86 ± 21.7	2.82 ± 37.7
Taking Any Beers R	1,264,902 (49.9%)	32,725 (55.5%)
Total Treatment Costs	\$ 11,424 ± 33,350	\$ 27,244 ± 45,144

Data expressed as mean \pm standard deviation (SD) or otherwise indicated as Number (%). All differences significant at α = 0.05. n = 2,595,254

Characteristics of Delirium Patients

	Patients without Delirium Admissions	Patients with Delirium Admissions
Age, years	73.87 ± 6.8	78.34 ± 6.9
Female	1,468,454 (58.1%)	39,133 (56.8%)
Charlson Score	0.08 ± 0.5	0.34 ± 1.1
Frailty Score	0.33 ± 2.2	2.91 ± 4.3
Length of Stay, days	5.86 ± 8.5	9.86 ± 14.4
Delirium Drug Days	39.6 ± 84.80	71.82 ± 107.36
Taking Any Beers R	1,254,510 (49.7%)	43.117 (62.2%)
Total Treatment Costs	\$ 10,868 ± 31,546	\$ 45,380 ± 72,459

Data expressed as mean \pm standard deviation (SD) or otherwise indicated as Number (%). All differences significant at α = 0.05. n = 2,595,254

Results: Falls and Fractures

	Patients with No Fall Admissions (n = 2,536,274)	Patients with Fall Admissions (n = 58,980)
Antipsychotics	58,753 (2.3%)	4,008 (6.8%)
Barbiturates	9,878 (0.4%)	231 (0.4%)
Benzodiazepines	354,080 (14.0%)	10,598 (18.0%)
Sedatives	94,429 (3.6%)	2,040 (3.5%)
Tricyclic antidepressants	33,999 (1.3%)	898 (1.5%)
Other Beers Medications	715,763 (28.2%)	14,950 (25.4%)
No Beers Medications	1,271,372 (50.1%)	26,255 (44.5%)

Results: Delirium and Confusion

	Patients with No Delirium admissions (n = 2,536,274)	Patients with Delirium Admissions (n = 58,980)
Antihistamines	45,907 (1.8%)	1,231 (1.8%)
Antipsychotics	52,187 (2.1%)	10,574 (15.4%)
Benzodiazepines	351,640 (14.0%)	13,038 (19.0%)
Narcotics	1,514 (0.1%)	27 (0.04%)
Other Beers Medications	803,262 (31.8%)	18,247 (26.5%)
No Beers Medications	1,271,900 (50.5%)	25,727 (37.8%)

Regression Results: Falls and Fractures

Beers Category	Odds Ratio	95% CI	<i>p</i> -value
Antipsychotics	1.935	[1.865, 2.007]	<.0001
Benzodiazepines	1.372	[1.341, 1.405]	<.0001
Barbiturates	1.290	[1.13, 1.472]	0.953
Sedatives	1.184	[1.13, 1.239]	0.0002
Tricyclic Antidepressants	1.333	[1.245, 1.427]	0.2426
Other Beers Medication	1.073	[1.051, 1.095]	<.0001

Model c-statistic: 0.725

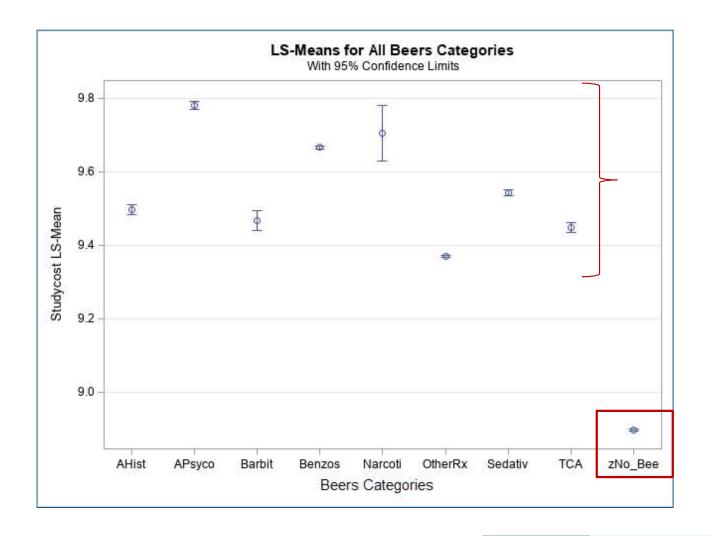
All Beers Criteria categories values are in comparison to the No Beers group.

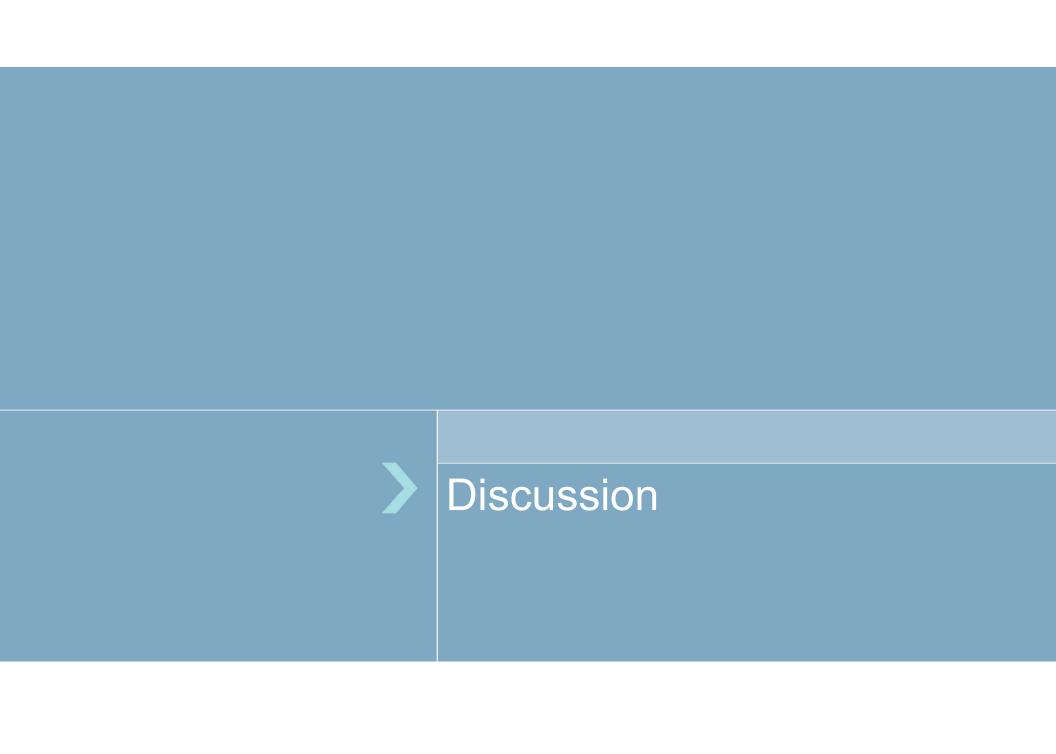
Regression Results: Delirium

Beers Category	Odds Ratio	95% CI	<i>p</i> -value
Antipsychotics	5.122	[4.985, 5.263]	<.0001
Benzodiazepines	1.801	[1.762, 1.841]	0.005
Antihistamines	1.416	[1.335, 1.503]	0.003
Narcotics	1.05	[1.065, 1.544]	0.0103
Other Beers Medications	1.221	[1.197, 1.245]	<.0001

Model c-statistic: 0.80

All Beers Criteria categories values are in comparison to the No Beers group.




Regression Results: Total Study Costs

Beers Criteria Class	Exponentiated (\$e ^β)	95% CI
Antihistamines	13,308	[13132, 13487]
Antipsychotics	17,692	[17500, 17886]
Barbituates	12,926	[12584, 13276]
Benzodiazepines	15,782	[15712, 15853]
Narcotics	16,393	[15201, 17679]
Sedatives	13,957	[13836, 14080]
Tricyclic Antidepressants	12,690	[12508, 12874]
Other Beers Medications	11,726	[11688, 11765]
No Beers Medications ^a	7,311	[7293, 7328]

^a Reference group All comparisons to the reference group were significant at p < .0001

Discussion: Falls and Fractures

Patients who experienced falls and fractures compared with those who did not:

- Average age 77.52 vs. 73.91 years
- Charlson Score 0.19 vs. 0.08
- Length of stay 7.84 vs. 6.32 days

Most frequent Beers Criteria classes involved:

- Benzodiazepines (n=10,598) and
- Antipsychotics (n=4,008)

Increased risk of a falls/fracture admission:

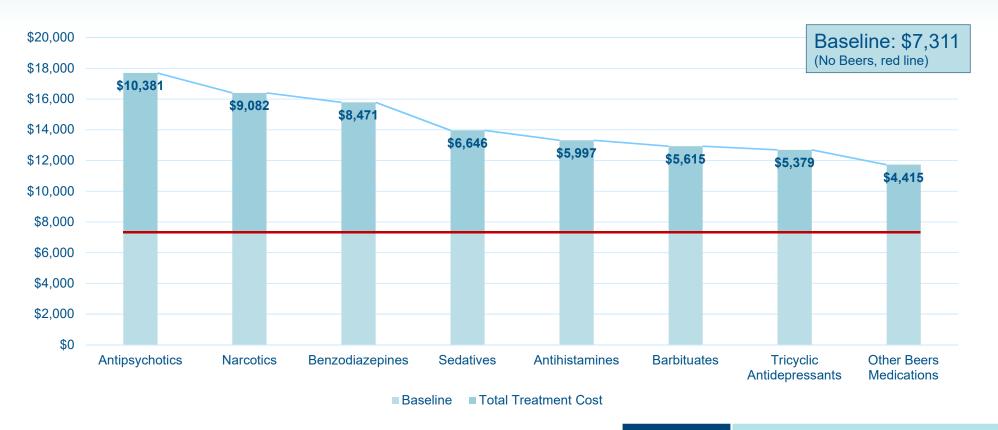
- Antipsychotics are associated 1.9x [1.865, 2.007]
- Benzodiazepines are associated 1.4x [1.341, 1.405]
- TCA's are associated 1.3x [1.245, 1.427]

Discussion: Confusion and Delirium

Patients who experienced confusion and delirium compared with those who did not:

- Average age 78.34 vs. 73.87 years
- Charlson Score 0.34 vs. 0.08
- Length of stay 9.86 vs. 5.86 days

Most frequent Beers Criteria classes involved:


- Benzodiazepines (n=13,038) and
- Antipsychotics (n=10,574)

Increased risk of a falls/fracture admission:

- Antipsychotics are associated 5.1x [4.985, 5.263]
- Benzodiazepines are associated 1.8x [1.762, 1.841]
- Antihistamines are associated 1.4x [1.338, 1.503]

Effect of Beers Medication Class on Treatment Cost

Changing What's Possible MUSC.edu

Overall Findings

Patients in both groups were older, had a longer length of stay, and a higher Charlson Score

Antipsychotics and benzodiazepines most frequently prescribed to patients who experienced a fall/fracture or delirium/confusion admission

Risk of admission:

 Antipsychotics and benzodiazepines were associated with the greatest risk increase of admission both falls and fractures, and delirium and confusion

Overall treatment costs:

- Antipsychotics were associated with the highest expected cost of admission and benzodiazepines third, independent of the admission type
- Narcotics, specifically for the delirium patients, was the second highest contributor to the expected cost of admission

Limitations

Data from the Roldan (2018) study:

- Only included community-dwelling individuals ≥65 years old, this would exclude those who are institutionalized or in nursing homes/assisted living
- Excluded costs relating to skilled nursing, long-term, palliative, or hospice care

Use of Truven Marketscan® Administrative Claims data:

- MarketScan is a convenience, not a randomized, sample
- Coding of billing data within the dataset, while unlikely, may be incorrect and unexpected exclusion of patients could occur
- Data is generally aggregated from larger employers providing commercially-provided health insurance

Future Research and Study Conclusions

Future Research

- 1. Examining specific medications versus an entire class
- 2. Examining combinations of drug classes and their effects on falls, fractures, delirium, and confusion
- 3. Examining risks of falls, fractures, confusion, and delirium outside of community-dwelling individuals, i.e. short-term rehab facilities, long-term care, and skilled nursing facilities

Conclusion

Falls and fracture patients using antipsychotics are at twice the risk for hospitalization than their well-matched controls

Delirium and confusion patients using antipsychotics are at more than a five times risk for hospitalization than their well-matched controls.

For all patients:

- Antipsychotics were associated with an increase of \$10,381 over the non-Beers baseline
- Benzodiazepines were associated with an increase of \$8,471 over the non-Beers baseline

Specifically for the delirium patients, narcotics were associated with an increase of \$9,082 over the non-Beers baseline.

Further research and investigation into antipsychotic use in the elderly is warranted.

Founded in 1824 in Charleston, The Medical University of South Carolina is the oldest medical school in the South. Today, MUSC continues the tradition of excellence in education, research, and patient care. MUSC educates and trains more than 3,000 students and residents, and has nearly 13,000 employees, including approximately 1,500 faculty members. As the largest non-federal employer in Charleston, the university and its affiliates have collective annual budgets in excess of \$2.2 billion. MUSC operates a 750-bed medical center, which includes a nationally recognized Children's Hospital, the Ashley River Tower (cardiovascular, digestive disease, and surgical oncology), Hollings Cancer Center (one of 68 National Cancer Institute designated centers), Level I Trauma Center and Institute of Psychiatry. For more information on academic information or clinical services, visit musc.edu. For more information on hospital patient services, visit muschealth.org.

Changing What's Possible

MUSC.edu

References Used

- 1. Scott, I. A., Gray, L. C., Martin, J. H., & Mitchell, C. A. (2012). Minimizing Inappropriate Medications in Older Populations: A 10-step Conceptual Framework. *The American Journal of Medicine*, 125(6), 529-537.e524. https://doi.org/10.1016/j.amjmed.2011.09.021
- 2. Dagli, R. J., & Sharma, A. (2014). Polypharmacy: a global risk factor for elderly people. *J Int Oral Health*, 6(6), i-ii. https://www.ncbi.nlm.nih.gov/pubmed/25628499
- 3. Hosseini, S. R., Zabihi, A., Jafarian Amiri, S. R., & Bijani, A. (2018). Polypharmacy among the Elderly. *J Midlife Health*, 9(2), 97-103. https://doi.org/10.4103/jmh.JMH_87_17
- 5. Weiner, D. K., Hanlon, J. T., & Studenski, S. A. (1998). Effects of central nervous system polypharmacy on falls liability in community-dwelling elderly. *Gerontology*, *44*(4), 217-221.

- 6. Neutel, C. I., Perry, S., & Maxwell, C. (2002). Medication use and risk of falls. *Pharmacoepidemiol Drug Saf*, *11*(2), 97-104. https://doi.org/10.1002/pds.686
- 7. Tinetti, M. E., Gordon, C., Sogolow, E., Lapin, P., & Bradley, E. H. (2006). Fall-Risk Evaluation and Management: Challenges in Adopting Geriatric Care Practices. *The Gerontologist*, *46*(6), 717-725. https://doi.org/10.1093/geront/46.6.717
- 8. Hammond, T., & Wilson, A. (2013). Polypharmacy and falls in the elderly: a literature review. Nurs Midwifery Stud, 2(2), 171-175. https://doi.org/10.5812/nms.10709
- 9. Gelbard, R., Inaba, K., Okoye, O. T., Morrell, M., Saadi, Z., Lam, L., Talving, P., & Demetriades, D. (2014). Falls in the elderly: a modern look at an old problem. *The American Journal of Surgery*, 208(2), 249-253. https://doi.org/https://doi.org/10.1016/j.amjsurg.2013.12.034
- 10. Ambrose, A. F., Cruz, L., & Paul, G. (2015). Falls and Fractures: A systematic approach to screening and prevention. *Maturitas*, 82(1), 85-93. https://doi.org/10.1016/j.maturitas.2015.06.035

- 11. Chiu, M. H., Lee, H. D., Hwang, H. F., Wang, S. C., & Lin, M. R. (2015). Medication use and fall-risk assessment for falls in an acute care hospital. *Geriatr Gerontol Int*, 15(7), 856-863. https://doi.org/10.1111/ggi.12359
- 12. Allali, G., Launay, C. P., Blumen, H. M., Callisaya, M. L., De Cock, A. M., Kressig, R. W., Srikanth, V., Steinmetz, J. P., Verghese, J., Beauchet, O., & Biomathics, C. (2017). Falls, Cognitive Impairment, and Gait Performance: Results From the GOOD Initiative. *J Am Med Dir Assoc*, 18(4), 335-340. https://doi.org/10.1016/j.jamda.2016.10.008
- 13. Ray, W. A., Thapa, P. B., & Gideon, P. (2000). Benzodiazepines and the risk of falls in nursing home residents. *J Am Geriatr Soc*, *48*(6), 682-685. https://doi.org/10.1111/j.1532-5415.2000.tb04729.x
- 14. Bogunovic, O. J., & Greenfield, S. F. (2004). Practical geriatrics: Use of benzodiazepines among elderly patients. *Psychiatr Serv*, *55*(3), 233-235. https://doi.org/10.1176/appi.ps.55.3.233
- 15. Kragh, A., Elmståhl, S., & Atroshi, I. (2011). Older adults' medication use 6 months before and after hip fracture: a population-based cohort study. *J Am Geriatr Soc*, *59*(5), 863-868. https://doi.org/10.1111/j.1532-5415.2011.03372.x

- 16. Puustinen, J., Nurminen, J., Lopponen, M., Vahlberg, T., Isoaho, R., Raiha, I., & Kivela, S. L. (2011). Use of CNS medications and cognitive decline in the aged: a longitudinal population-based study. *BMC Geriatrics*, *11*, 70. https://doi.org/10.1186/1471-2318-11-70
- 17. Morrison, R. S., Magaziner, J., Gilbert, M., Koval, K. J., McLaughlin, M. A., Orosz, G., Strauss, E., & Siu, A. L. (2003). Relationship between pain and opioid analgesics on the development of delirium following hip fracture. *Journals of Gerontology. Series A: Biological Sciences and Medical Sciences*, *58*(1), 76-81. https://doi.org/10.1093/gerona/58.1.m76
- 18. Hein, C., Forgues, A., Piau, A., Sommet, A., Vellas, B., & Nourhashemi, F. (2014). Impact of polypharmacy on occurrence of delirium in elderly emergency patients. *J Am Med Dir Assoc*, 15(11), 850 e811-855. https://doi.org/10.1016/j.jamda.2014.08.012
- 19. Kalisch Ellett, L. M., Pratt, N. L., Ramsay, E. N., Sluggett, J. K., Barratt, J. D., & Roughead, E. E. (2016). Central Nervous System-Acting Medicines and Risk of Hospital Admission for Confusion, Delirium, or Dementia. *Journal of the American Medical Directors Association*, 17(6), 530-534. https://doi.org/https://doi.org/10.1016/j.jamda.2016.02.008

- 20. Swart, L. M., van der Zanden, V., Spies, P. E., de Rooij, S. E., & van Munster, B. C. (2017). The Comparative Risk of Delirium with Different Opioids: A Systematic Review. *Drugs Aging*, *34*(6), 437-443. https://doi.org/10.1007/s40266-017-0455-9
- 21. Mueller, C., Molokhia, M., Perera, G., Veronese, N., Stubbs, B., Shetty, H., Codling, D., Huntley, J., & Stewart, R. (2018). Polypharmacy in people with dementia: Associations with adverse health outcomes. *Experimental Gerontology*, *106*, 240-245. https://doi.org/10.1016/j.exger.2018.02.011
- 22. O'Neill Roldan, C. (2018). Effect of Beers criteria on healthcare utilization and costs in community-dwelling elderly patients Medical University of South Carolina]. Charleston.
 - http://digital.library.musc.edu/cdm/singleitem/collection/medica/id/1444/rec/1

