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Using the 2013 edition of the Truven Marketscan ® Administrative Claims database, this study 

looks to link the expected side effects of Beers Criteria medications to logical hospital 

admissions. This study sets to examine hospital admissions and emergency department visits for 

community-dwelling elderly individuals 65 years or older specifically for falls and fracture as 

well as confusion and delirium admissions. These hospital admission types constitute a 

significant number of admissions the elderly experience due to the medication side effects which 

affect balance, gait, and cognition. Through the use of 2.6 million propensity-score matched 

patients, 1.297 million having been exposed to Beers Criteria medications and 1.297 million 

patients not exposed, this study was able to confirm the linkage between the expected side effects 

of the medication classes and their logical hospital admissions. Antipsychotics and 

benzodiazepines were the most frequent prescribed medications to both groups of admission and 

were also associated with the highest increase in risk of hospitalizations. Future research into 

medication specific research in regards to falls and fractures, and confusion and delirium in the 

elderly is warranted. 
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1) CHAPTER I INTRODUCTION 

In the most recent report by the National Center for Health Statistics published in June 

2019, it is estimated that the overall life expectancy of a person in the United States is 78.6 years 

for all races and sexes and this value has been on a steady increase since 1970 (Arias & Xu, 

2019). There are several issues that a population who is not only aging and staying alive longer 

but a population who is also steadily increasing can cause; one of the most important and 

currently pressing issues is that of healthcare expenditures associated with aging. Many people 

may think the aging population “spend less money” as they are less able to travel, take part in 

recreational activities but this is not entirely true.  

The question we struggle with is not completely clinical. To begin driving the total 

amount of healthcare expenditures in the United States down, we must first understand the 

absolute underlying causes of these expenditures and how to prevent them from occurring. 

Throughout much of the literature on healthcare expenditures in elderly populations there is a 

consistent trend present, what actions, both internal and external to the healthcare system, can we 

take to prevent the unplanned hospitalization of elderly patients? This question, while thoroughly 

researched, the true underlying question is not how we can prevent these unplanned admissions, 

but how can we predict future unplanned hospitalizations based on the medical and statistical 

information we currently have on the aging and elderly population.  

It is consistently referenced through the literature on unplanned hospitalizations in elderly 

populations that the availability of a validated predictive model or integrated clinical decision 

support tool which can predict future hospitalizations would be the crucial first step in reducing 

the number of preventable readmissions (LaMantia et al., 2010; Parameswaran Nair, Chalmers, 

Peterson, et al., 2016). There have been several attempts to build such a model but the attempts 



2 

 

by Alassaad et al. (2015), Chang et al. (2005), LaMantia et al. (2010), and Parameswaran Nair, 

Chalmers, Connolly, et al. (2016) have only been able to build models with a concordance 

statistic, or c-statistic, of 0.73 at the greatest. While there is no published statistical rational, the 

c-statistic that is accepted in medical studies showing high discriminative power is 0.95 (Caetano 

et al., 2018). 

One consequence of the growing elderly population in which we will focus on in this 

study is the concept of polypharmacy. While there is no standardized definition of 

“polypharmacy” across the literature, it is defined as the prescribing of multiple clinically 

indicated medications to one individual from one or more prescribers, to which these 

medications are unnecessary duplications of treatment, harmful to the patient, or whose effect 

could be synergistic or antagonistic when mixed with other medications (Dagli & Sharma, 2014; 

Endsley, 2018; Hammond & Wilson, 2013; Quinn & Shah, 2017; Sergi et al., 2011). In the 

United States, 61% of adults over the age of 65 have two or more chronic conditions, which 

further drives up the prevalence of polypharmacy from overprescribing practices and insufficient 

patient monitoring and follow-up (Quinn & Shah, 2017). Polypharmacy, adverse drug events 

(ADE), and drug related mortality are a few of the most burdensome affects from aging on the 

healthcare ecosystem today, which is why it is so very important to address this problem (Quinn 

& Shah, 2017).  

A 2018 study by O’Neill Roldan aimed to measure healthcare resource utilization of 

elderly patients and the resulting healthcare costs associated with the use of potentially 

inappropriate medications. This study found that individuals whom were prescribed any Beers 

Criteria medication experienced a greater number of hospital admissions for a longer length of 

stay compared to a matched group of individuals not taking these medications (O'Neill Roldan, 
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2018). Multiple studies have already determined that a relationship exists between elderly 

patients taking medications on the Beers Criteria and unplanned hospitalizations. However, it is 

not known if these additional hospital admissions are logically related to the expected side 

effects of Beers drug used.  

This study will use the O’Neill Roldan (2018) data set to identify the rate of readmissions 

that are logically linked to the Beers Criteria drugs. We will examine hospital admissions and 

emergency department visits (ED) for two key types of events associated with a broad array of 

medication classes listed on Beers Criteria: 

1) Admissions for falls and/or fractures in patients taking medications on the Beers 

Criteria which are not recommended because of their effect on balance and gait, and  

2) Admissions for confusion and/or delirium patients taking medications on the Beers 

Criteria which are not recommended because of their effect because on cognition and 

a persons’ ability to live independently.  

The population for this study will be secondary-use of the data set from an existing research 

study performed by O'Neill Roldan (2018) and colleagues at the Medical University of South 

Carolina. This dataset contains roughly 2.6 million patients extracted from the 2013 Truven 

Marketscan® Administrative Claims Database. The data are de-identified and the study meets 

the criteria for non-human research which requires no informed consent. Work on this patient 

cohort has been previously published in: “Simpson, K. N., Seamon, B. A., Hand, B. N., Roldan, 

C. O., Taber, D. J., Moran, W. P., & Simpson, A. N. (2018). Effect of frailty on resource use and 

cost for Medicare patients. J Comp Eff Res, 7(8), 817-825. https://doi.org/10.2217/cer-2018-

0029”. 
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2) CHAPTER II LITERATURE REVIEW 

As previously discussed, there is extensive literature available in determining if an 

association present between Beers Criteria medications and an increased likelihood of a patient 

experiencing an unplanned hospitalization. Since that determination, researchers have sought to 

expand the domain and attempt to predict these unplanned hospitalizations, however, as of the 

time of this writing to our knowledge, there is still no validated tool available that can predict 

unplanned hospitalizations based solely on Beers Criteria and existing patient characteristics.  

Clinically, elderly patients function and require different treatment and care provided in a 

manner different than your average adult. For example, elderly patients may have a decrease in 

kidney or liver function, metabolize and excrete medications at a faster or slower rate, an 

increased number of comorbid conditions, and an increased potential to experience an adverse 

drug event (ADE) (Berryman et al., 2012; Gokce Kutsal et al., 2009; LaMantia et al., 2010). 

Older patients are far more susceptible to adverse effects of pharmaceutical medications, yet 

studies have shown that high dose and very high doses of these inappropriate medications are 

still being used in the care and treatment of elderly patients. A study by Mitchell et al. (2017) 

found in two US academic medical centers in a 6-month period that 3,394 doses of potentially 

inappropriate medications were administered to 1,364 different patients. Mitchell et al. (2017) 

calls attention to the potentially unsafe use and higher than recommended dosing of potentially 

inappropriate medications being used in emergency departments. 

2.1 American Geriatric Society Beers Criteria  

The American Geriatrics Society (AGS), since 2011, has been the organization 

responsible for maintaining the Beers Criteria for Potentially Inappropriate Medication Use in 

Older Adults. First published in 1991, the Beers Criteria from the AGS is the oldest list of 
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medications that outside of extraordinary circumstances, should be avoided in the care and 

treatment of elderly individuals (American Geriatrics Society Beers Criteria® Update Expert 

Panel, 2019). The AGS publishes a revision to the Beers Criteria every three years by convening 

a panel of medical experts to review any newly published evidence and determine if any of the 

Beers Criteria recommendations should be removed or changed, or if there are new 

recommendations that should be added. There are five primary sections which make up the 

complete Beers Criteria list, potentially inappropriate medications for older adults, medications 

that should be avoided based on the patient’s condition, medications that should be used with 

caution based on the patient’s condition, medications with severe drug-drug interactions, and 

medications which require dose adjustment based on the patients renal function (American 

Geriatrics Society Beers Criteria® Update Expert Panel, 2019).  

In the 2019 revision of the Beers Criteria there were several notable changes made by the 

expert panel. Compared to the 2015 revision, the 2019 revision removed a number of 

medications the panel removed because “the drug-related problem was not sufficiently unique to 

older adults” and “they [the decisions] were made to help keep the AGS Beers Criteria® 

streamlined and focused on medications particularly problematic for older adults” (American 

Geriatrics Society Beers Criteria® Update Expert Panel, 2019). Overall the expert panel decided 

to remove 25 medications or classes of medications from the Beers Criteria and add new 

approved medications to the medications to use with caution, the drug-drug interaction, and the 

potentially inappropriate medications lists for 2019 (American Geriatrics Society Beers 

Criteria® Update Expert Panel, 2019). The AGS summarized their changes from the 2015 to 

2019 revision of the Beers Criteria in table 10 of their publication and is presented below in 

Figure 1. 
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Figure 1: Medications/Criterion Modified Since 2015 American Geriatrics Society Beers 

Criteria® 

 

For the purposes of this study, the 2012 edition of the Beers Criteria will be used as that 

was the most recent update of the Beers Criteria in tandem with the availability of the Truven 

Marketscan® dataset the O’Neill Roldan (2018) study used. The medications that comprise the 

2012 Beers Criteria are available in Appendix A while the most recent version of the Beers 

Criteria, the 2019 revision, is available in Appendix B. 
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2.1.1 The Delphi Analysis Methodology 

The AGS Beers Criteria, along with the other inappropriate medication lists discussed in 

section 2.2 Non-Beers Criteria Medication Guides, were all developed using the Delphi Method 

to reach a shared consensus among a group or panel of experts (McMillan et al., 2016). 

Developed in 1953 by the Rand Corporation, the Delphi Method uses multiple series of self-

guided questionnaires that solicits individual feedback from the panel members or expert 

allowing for the confidentiality of their comments if the situation should require such (McMillan 

et al., 2016). The Delphi Method is a useful tool because it is intrinsically industry agnostic, 

meaning this methodology can be used and implemented outside of healthcare and health 

services research (McMillan et al., 2016; Powell, 2003). The Delphi Method is used when a 

specific research initiative needs to solicit, and eventually combine, the opinions and expertise of 

a group of subject matter experts (SMEs) when there is a general lack of agreement on a specific 

topic (Powell, 2003). 

The advantage of using the Delphi Method for building guidelines and frameworks is the 

inclusion of a standard 3, 5, 7, or 9-point Likert scale rating for a quantitative evaluation as well 

as the ability for the participant to provide a free-text response to elaborate or justify their rating 

(McMillan et al., 2016). Once the first Delphi survey round is complete, the responses are 

collected and in turn used to develop the survey for the second Delphi round which contains the 

participants original rating and the groups median rating for each question, as well as a selection 

of the free-text responses to provide thought and insight from the other panel members 

(McMillan et al., 2016). The second round of the Delphi Method allows the participant to review 

the general rating as compared with their own and provides the opportunity for the participant to 

keep their previous rating or adjust it based on the information provided by the other participants 
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(McMillan et al., 2016). Because the second round of the Delphi Method is based on the results 

of the first round, Powell (2003) mentions this [second] round is when the researcher will either 

see, or begin to see, the opinions provided converge and become more uniform. Once the second 

round of surveying is complete, the researcher can then combine the participant’s adjusted 

ratings and analyze the results.  

According to McMillan et al. (2016), agreement on a topic is typically defined when the 

median score is greater than 77% of the maximum score for the Likert scale used in the survey. 

For example, if the survey used a 9-point Likert scale range, then agreement on a topic would be 

considered reached if the median score was greater than or equal to 7 (McMillan et al., 2016). 

Additionally, as described by McMillan et al. (2016), disagreement on a topic is considered 

when one-third of the number of respondents score the question or statement on the opposite end 

of the scale when compared to the other participants. This definition of agreement and 

disagreement on a topic is of course dependent upon the topic in which the Delphi Methodology 

is being used for. In a systematic review by Powell (2003), she found varying definitions of 

panel agreement and disagreement. In one study mentioned by Powell (2003), the outcome of the 

Delphi Method required 100% agreement between the participants, another only requiring 51% 

consensus, and others listed no specific threshold which was used.  

With regards to the Delphi Method, while this methodology is well understood, 

researchers using this method have been called upon to explain and explicitly define the criteria 

their study is using for consensus among participants (Diamond et al., 2014). Various systematic 

reviews have revealed the criteria used to define agreement and overall consensus is both 

defined, and reported, poorly in published literature (Diamond et al., 2014; Toronto, 2017). 

Researchers using the Delphi Method should be specifically trained in the proper execution of 
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this tool due several caveats and complexities of the methodology itself. When used properly, the 

Delphi, or newer e-Delphi (electronic Delphi) methodology is an incredibly useful tool for 

collecting, aggregating, and eventually unifying the opinions of experts on a specific topic 

(Hasson et al., 2000; Toronto, 2017). 

2.1.2 In regards to Potentially Inappropriate Medications 

Beers Criteria is one of the many examples of potentially inappropriate medications lists 

published and in use today that recommend against use in the care and treatment of elderly 

individuals. Baldoni et al. (2014) published a study after interviewing 1,000 elderly Brazilian 

residents to identify not only the clinical, but the socioeconomic and demographic factors that 

may attribute PIM use in those elderly patients. This study also compared PIM usage using both 

the 2003 and the 2012 versions of the Beers Criteria and tested the agreement between the two 

versions directly. Baldoni et al. (2014) found was that the list of factors associated with PIM 

usage in their patients were the same between the 2003 and 2012 versions of Beers Criteria 

(female, self-medicates, use of OTCs, psychotropic medications, polypharmacy, and common 

ADE symptoms), there was a difference in the percentage of PIMs identified between the two 

versions of the criteria. The 2003 revision of Beers Criteria identified 48.0% of PIMs while the 

2012 version identified 59.2% (Baldoni et al., 2014). Using the McNemar’s test, Baldoni et al. 

(2014) determined that the difference in identification percentages between the two revisions was 

indeed significant. Outside of the analysis by Baldoni et al. (2014), the significant change in 

identification percentage may also have been due to the 2012 revision. The American Geriatric 

Society indicated that the 2012 revision of the Beers Criteria was one of the largest overhauls of 

the criteria as this was the first revision where the AGS was responsible for writing and 

publishing said update (American Geriatrics Society Beers Criteria Update Expert Panel, 2012). 



10 

 

There is a significant amount of literature available on Beers Criteria and the prevalence 

of potentially inappropriate medications in the elderly population. Research has shown the risk 

for unplanned hospitalizations increases as the number of active PIMs the patient is taking also 

increases (Gallagher et al., 2008; Price et al., 2014a, 2014b). 

2.1.3 In regards to Drug Exposure and Unplanned Hospitalizations 

 As discussed earlier, one of the leading causes of unplanned hospitalizations in the 

elderly population is in fact from adverse drug events (Price et al., 2014b). Studies have shown 

that in elderly populations, an increase in polypharmacy has been correlated with an increased 

risk of the patient experiencing an adverse drug event, which has also been correlated with an 

significant increased risk of unplanned hospitalizations (Sarwar et al., 2018; Wimmer et al., 

2014). Because of these, and other similar findings correlating the use of PIMs to unplanned 

hospitalizations, being able to predict future unplanned hospitalizations in this population. 

A 2018 Pakistani study by Sarwar et al. found that in a population of 385 geriatric 

patients, 61% of participants were taking 5-9 prescription medications, and 56.4% of participants 

had an unplanned hospitalization that could be traced back to one of the PIMs they were taking. 

Sarwar et al. (2018) also found patients considered to have polypharmacy (5-9 medications) and 

excessive polypharmacy (10 or more medications) were 2.5 times and 38 times more likely to 

have an unplanned hospitalization, respectively (Sarwar et al., 2018).  

2.2 Non-Beers Criteria Medication Guides 

While the AGS Beers Criteria is a valuable tool for evaluating the pharmacologic care 

and treatment of an elderly patient, there are other generally accepted medication management 

criteria available as well. While there are others, two of the most common of these Beers 

alternatives of explicit or expert criteria is the Screening Tool to Alert Doctors to Right 
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Treatment (START)/Screening Tool for Older Persons’ Prescriptions (STOPP) and the Fit fOR 

The Aged (EURO FORTA) listing. 

2.2.1 START/STOPP Criteria 

The START/STOPP criteria was first published in 2008 from an Irish study compiled 

using the Delphi consensus method, similar to Beers Criteria, and most recently updated in 2014 

(Corsonello et al., 2012; Curtin et al., 2019). The START criteria consists of 34 prescribing 

indications for medications that have been either shown or are likely to provide a benefit to the 

patient while the STOPP criteria contains 80 inappropriate prescribing practices when caring for 

elderly patients (Corsonello et al., 2012; O'Mahony et al., 2015). While the STOPP criteria and 

the Beers Criteria have a similar purpose, there are a number of differences between the two that 

exist. First, the STOPP criteria is organized by body system making it easier for clinicians to 

navigate, while the Beers Criteria is organized by function as discussed earlier (Corsonello et al., 

2012). Second, because drug approval and availability differ between the United States and most 

European countries, the two criteria primarily focus on the pharmaceuticals that are available for 

use in their geographic area. Next considering the pharmaceuticals that do overlap on both lists, 

there are a number of items that are present on the STOPP criteria that are not present on the 

Beers Criteria (Corsonello et al., 2012). This could be for a number of reasons, the specific 

evidence taken into consideration, scoring methods when evaluating the literature and evidence, 

or differences in validation methods (Corsonello et al., 2012). And lastly, the START/STOPP 

criteria have been used in various randomized clinical trials (RCT) and have shown evidence of a 

clinical benefit when used as an intervention tool; Beers Criteria has not (Curtin et al., 2019).  

There has been a number of studies performed to access the head to head performance of 

START/STOPP and the Beers Criteria. A 2014 Spanish study by Hudhra et al. showed within a 
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population of 624 patients, Beers Criteria found 22.9% of PIMs while the STOPP criteria found 

38.4% of PIMs. Their research also found that the number of PIMs increased with an increase in 

Charlson Index Score and the number of drugs prescribed to the specific patient (Hudhra et al., 

2014). In another study by Salgueiro-Vázquez et al. (2016) found in a comparison between Beers 

Criteria and STOPP, that within a sample of 223 patients older than 65 years old and taking 10 or 

more medications per day, that 63.2% of patients met a Beers Criteria PIM and 73.9% of patients 

met a STOPP PIM. Additionally, a 2012 study from India echoes similar results as above; 19.8% 

PIP identification by START/STOPP while only 7.3% PIP identification by Beers Criteria 

(Karandikar et al., 2013). 

An Irish study by Hamilton et al. (2011) found that ADEs in their patient sample were 

identified by STOPP criteria 2.54 times more often than with Beers Criteria and 67.7% of the 

time STOPP was involved with the identification of an avoidable ADE compared to Beers 

Criteria at 28.5%. Hamilton et al. (2011) presents that the use of STOPP criteria is more 

clinically relevant because of its ability to identify PIMs that would result in an ADE.  

Studies have shown that there is a difference in sensitivity between Beers Criteria and 

using START/STOPP. A study by Brown et al. (2014) shows the inverse result from the studies 

discussed above. Brown et al. (2014) found that in a retrospective cohort of 174,275 patients, 

Beers Criteria was able to identify 34.1% of PIMs while STOPP was only able to identify 27.6%. 

Similarly in a 2015 Brazilian study, Oliveira et al. (2015) found that in a sample of 142 randomly 

selected patients, Beers Criteria was able to identify 51.8% of PIMs and STOPP was able to 

identify 33.8% of PIMs. A 2018 study by Sakr et al. with a group of 350 patient participants 

found that Beers Criteria was able to identify 20.4% of PIMs while STOPP was only able to 

identify 6.2% of PIMs. This study added an additional element, the Treatment Satisfaction 
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Questionnaire for Medications, or TSQM. The TSQM is a 14 item questionnaire aimed to 

evaluate the patient perceived success of the treatment provided to them (Sakr et al., 2018). This 

study also found that when either the Beers Criteria or STOPP criteria was actively being used in 

the experimental arm, the individual TSQM scores for patients with PIMs was significantly 

lower than for patients without PIMs (Sakr et al., 2018).  

As discussed previously, the START/STOPP criteria was developed in Europe and 

contains medications that are not available for use in the United States and these medications do 

not appear on the Beers Criteria. When considering the international use of Beers Criteria, this 

needs to be taken into consideration as the two are not equally matched.  

2.2.2 EURO FORTA 

The Fit fOR The Aged, or FORTA, criteria was developed in Germany in 2008 and was 

later validated for use in 2012 (Curtin et al., 2019). Following FORTA’s validation, in 2015 

FORTA was updated to combine the six European medication management lists into one large, 

validated criteria, EURO FORTA (Curtin et al., 2019). The EURO FORTA criteria contains 264 

medications and medication classes that are organized by clinical diagnosis or syndrome (Curtin 

et al., 2019). Within each clinical diagnosis, the EURO FORTA criteria assigns a letter grade, A-

D, to each of the medications based on the safety and effectiveness in treating the particular 

diagnosis or syndrome (Curtin et al., 2019). The grading scheme would allow the clinician to 

ideally select the safest and most effective treatment while the medications that are harmful or 

should be avoided are indicated and EURO FORTA provides the clinician an alternative (Curtin 

et al., 2019). The EURO FORTA grading scheme is comprised of the following: “A, Absolutely, 

indispensable, clear-cut; B, Beneficial, proven benefit but limited extent of effect or safety 

concerns; C, Caution, questionable efficacy or safety profile, explore alternatives, and D, Don’t, 
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avoid if possible, find alternative” (Curtin et al., 2019, p. 6). A significant downfall of the EURO 

FORTA criteria is, unlike the STOPP/START or Beers Criteria, EURO FORTA does not address 

any drug-drug or drug-disease interactions (Curtin et al., 2019). 

There are a limited number of studies available which include EURO FORTA as a 

measurement tool. In a 2019 study by Awad and Hanna across 10 primary healthcare centers in 

Kuwait, they found that in a population of 420 participants, 53.1% of PIMs were identified by 

Beers Criteria, 55.7% by STOPP, and 44.3% by FORTA. 

2.2.3 PRISCUS List 

The PRISCUS list is a lesser known list of potentially inappropriate medications for use 

in elderly patients. Developed in 2010 by a group of German medical researchers after 

identifying the need for a PIM list based on the drugs and medications that were available for use 

within Germany and the differences in prescribing practices of its physicians (Holt et al., 2010). 

A study by Amann et al. (2012) found that in a retrospective study of medical care given in 2007 

to 804,400 elderly German patients that 25% of these patients were receiving at least one PIM. 

Amann et al., (2012) discusses while further research and validation of the PRISCUS list was 

needed, developing a PIM list containing specific medications available in Germany was 

necessary. This PIM list was developed in a similar method as the other PIM listings discussed 

thus far using a two round Delphi method utilizing a group of 25 expert participants (Holt et al., 

2010). After both Delphi evaluation rounds were complete, the expert panel agreed on the 

inclusion of 83 drugs from 18 different classes to the PRISCUS list (Holt et al., 2010). There was 

a subset of 46 of the 83 medications that the panel could not reach a clear decision of their 

appropriateness, and like Beers, the decision was made to include this subset of medications on a 
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separate list and if the PIM is absolutely necessary, recommendations for clinical adjustments are 

provided (Holt et al., 2010). 

The number of studies published in English on the effectiveness PRISCUS list 

identifying PIMs are limited in comparison to the availability of studies for the other PIM lists. 

One study by Siebert et al. (2013) compared the effectiveness of PIM identification in 308 

elderly patients at a geriatric rehabilitation facility using PRISCUS, STOPP/START, and Beers 

Criteria. The study found that the PRISCUS list found less than half as many PIMs as STOPP 

(0.5 vs. 1.2 PIMs) but identified slightly more PIMs as Beers (0.5 vs. 0.4 PIMs) 

2.3 Falls and Fractures in the Elderly Population 

It is well understood through the literature that falls and fractures in the elderly 

population, regardless of Beers Criteria medication exposure, are serious, yet unfortunately 

common occurrences. Published polypharmacy literature has found that 60% of elderly patients 

take 5 or more medications, while 20% of elderly patients take 10 or more medications (Scott et 

al., 2012). This study by Scott et al. (2012) found that elderly patients who experience hyper-

polypharmacy, which is the concurrent use of 10 or more medications, are at a 6x increase of 

experiencing an injurious fall during their lifetime. Aside from physical effects, there are a 

number of psychological effects on the patient that also occur with falls – such as loss of 

confidence in walking, fear of an additional falls, or the fear of losing independent living (Chang 

et al., 2011; Dionyssiotis, 2012; Hester & Wei, 2013). 

To begin to understand the relationship between falls and fractures and elderly 

populations, one of the pieces of early literature is a study by Weiner et al. (1998). This study 

was of particular importance because this was one of the few early studies that investigated and 

found a dose-response relationship between elderly patients using CNS-active medications and 
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their risk of falling. While this study had limitations bound to the convenience sample of 305 

community-dwelling elderly male veterans, the risk of falls and fractures was still present 

following a dose-adjusted relationship of the CNS-acting medications the sample patients were 

taking.  

Following the Weiner et al. (1998) study, a 2002 study by Neutel et al. found that elderly 

patients taking multiple drugs were at a higher risk of experiencing an injurious fall and 

investigated the presence of polypharmacy and hyperpolypharmacy in the elderly. This study 

found an unadjusted risk of patients who were exposed to some level of hyper-polypharmacy 

were at a 6 times higher risk of hospitalization than a patient taking less than 5 different 

medications (Neutel et al., 2002). A 2013 study by Hammond and Wilson further investigated 

polypharmacy and falls in the elderly after Neutel et al. (2002) and others. Hammond and Wilson 

(2013) found that polypharmacy can be independently linked as a risk factor to falls and 

hospitalizations in elderly individuals but a stronger link exists between the patient experiencing 

a fall and the specific type of medication that the patient is taking.  

The study by Tinetti et al. 2006 focused on the healthcare expenditure of a single fall 

event and the burden than potentially preventable falls place on the United States healthcare 

system. Tinetti et al. (2006) found that the average healthcare expenditure for a single fall event 

was $24,330 while the overall healthcare burden caused by falls in patients over the age of 65 

years old was in excess of $5.7 billion annually. 

When examining the literature for studies that investigated the relationship between falls 

in the elderly and the presence of varying comorbidities yielded broad results. To my knowledge, 

none of the literature available focused on all 29 Elixhauser Comorbidity conditions as O’Neill 

Roldan (2018) and this study had. Chiu et al. (2015) considered patients with certain diagnoses 
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or comorbidities and their association with falls and fractures. This study found patients with an 

anxiety diagnosis were 4.7 times more likely to experience a fall than those without such a 

diagnosis. Chiu et al. (2015) considered different classes of medications in this study and found 

an increase in benzodiazepine use with the study group of patients. R. Gelbard et al. (2014) 

found 72.5% of elderly patients that experienced an injurious fall had at least one comorbidity. 

Gelbard’s study was one of the very few I could find that specifically focused on non-ground 

level falls – which are a type of fall defined as beginning with both feet on the ground. Gelbard 

found that non-ground level falls are typically cause more injury and lead to a longer length of 

stay. 

The study by Ambrose et al. (2015) found that falls account for more than 85% of 

fractures in the elderly. These fractures are commonly associated with impaired balance and gait, 

polypharmacy, and a prior history of falls and typically involve the fracture of an already 

osteoporotic bone. This study led to Allali et al. (2017) developing the GOOD initiative, “Gait, 

Cognition, & Decline” to study gait speed in relation to a patients quality of life. As predicted by 

the study’s hypothesis, gait speed was significantly associated with an increased risk of falls in 

elderly individuals because the loss of balance and stability while walking. 

2.3.1 Fall-Risk-Increasing Drugs (FRIDs) 

In 2011, Kragh et al. coined the term “Fall-Risk Increasing Drugs”, or FRIDs. This 

specific list is composed of six classes of medications identified from either previously published 

literature or classified by the World Health Organization as drugs that increase fall risk in elderly 

populations (Kragh et al., 2011). The specific medication classes are psychotropics, 

cardiovascular, anticholinergics, antiepileptics, antiparkinsonian, and opioids medications There 

are many medications which are routinely used in younger patients that are not safe for the 
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elderly for a variety of different reasons ranging from drug-drug or drug-disease interactions to 

physiological changes in the elderly as they age (Kragh et al., 2011). 

2.3.2 Benzodiazepines 

Benzodiazepine use in the elderly is common for a variety of reasons whether for sleep 

disorders, anxiety, or other psychological uses. This class of medications are known to sedative 

effects in regular adults and those sedative effects could be amplified in some cases in elderly 

individuals. Ray et al. (2000) considered this topic of the sedative effects in community-dwelling 

elderly individuals who still remained mobile and self-sufficient. Ray et al. (2000) echoes the 

already understood risk of increased sedative effects and falls in elderly patients using 

benzodiazepines but happened to be one of the earlier studies that considered falls and the actual 

timing of starting a new benzodiazepine prescription. This study found the greatest risk of falls in 

the elderly occur within the first seven days of beginning a new benzodiazepine prescription (OR 

= 2.96) but still remained elevated after as time continued. 

The Neutel et al. (2002) study mentioned earlier also found patients who were starting a 

new benzodiazepine or antipsychotic prescription were at a very high risk of injurious fall. 

Through the use of a case-crossover study, Neutel et al. (2002) found that these patients starting 

a new course of benzodiazepine or antipsychotic medication treatment were at an 11 times higher 

risk of falling in comparison to their control. Bogunovic and Greenfield (2004) investigated 

benzodiazepine use in community-dwelling elderly who still operate motor vehicles. This study 

found because of the sedative properties of benzodiazepines, their usage in the elderly must be 

carefully monitored in those community-dwelling individuals still operating motor vehicles. 

Benzodiazepines can contribute to psychomotor impairment due to their sedative effects; and 
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while also increases the risk of falls in these individuals, may also increase the risk of automobile 

accidents with those who may still operate motor vehicles. 

2.4 Polypharmacy 

While there is no strict descriptive or quantitative definition of polypharmacy, it is 

generally described through the literature as the prescribing and administration of five or more 

medications that are clinically indicated for a patient but may be a duplication treatment or even 

unnecessary care for the individual (Dagli & Sharma, 2014; Endsley, 2018; Gokce Kutsal et al., 

2009; Hosseini et al., 2018; Wimmer et al., 2014). In various systematic reviews of the literature, 

it was determined that the actual quantitative threshold for polypharmacy varied widely. 

Jokanovic et al. (2015) found that most studies in the review used 5 or more, 9, or 10 

medications as the threshold for defining polypharmacy while Masnoon et al. (2017) found that 

the most common qualitative definition was 5 or more medications, but this also varied widely 

between two medications to 11 or more. One important distinction that Masnoon et al. (2017) 

makes in their literature review is that a pure numerical definition of polypharmacy should not be 

enough in making clinical decisions. Masnoon et al. (2017) argues that polypharmacy simply as 

an integer count does not take into consideration one important aspect, the pharmacology of the 

patients’ medications along with the clinical needs of the patient. This argument for considering 

the actual clinical relevance of the medications and the patients’ comorbidities is important 

according to Masnoon et al. (2017).  

Considering this point by Masnoon et al. (2017), the definition of polypharmacy would 

only count the number of duplicate or harmful medications prescribed to the patient, not the 

medications that, while they might be listed as a PIM, are providing an overall positive clinical 

benefit to the patient. This is a valid point because the guidelines, Beers Criteria, 
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START/STOPP, and the others, are meant to provide high-level guidance for the clinician. 

Masnoon et al. (2017) presents the need for tools that consider polypharmacy, but also consider 

the patient as a whole to provide a more individualized approach to their medication 

management and eliminating harmful or unnecessary medications from their regimen.  

In a recent report published by the Centers for Disease Control (CDC), the percentage of 

both males and females taking at least one, three or more, and five or more prescription 

medications has been steadily on the rise since 1988, see figure 2.3.1 (National Center for Health 

Statistics, 2019). Given prescription drug use across all genders and age brackets continues to 

rise, we can infer that the prevalence of adverse drug events, or ADEs, across all individuals also 

has the potential to increase.  

Figure 2: Prescription drug use within 30 days, both sexes 

 
(National Center for Health Statistics, 2019) 



21 

 

In a 2005 systematic review of the literature, Fulton and Allen studied polypharmacy as a 

general topic in the care and treatment of elderly patients. The outcomes of the Fulton and Allen 

(2005) study are an excellent summarization of the status of the literature on polypharmacy at 

that time but what is most beneficial are the areas for future research and the gaps in the 

literature that are noted. For example, Fulton and Allen (2005) notes that the utilization of 

computerized medication databases or electronic health record (EHR) systems as done in many 

European studies, removes the reliance on the patient to recall all of their prescriptions. Use of 

and EHR would also allow for the automation of different medication management tasks and 

would also allow physicians and hospitals to implement the different criteria sets into their 

clinical decision support systems (CDSS). Second, and most importantly, Fulton and Allen 

(2005) notes an important point in there is still no generally accepted definition on what 

constitutes polypharmacy. Fulton and Allen (2005) believes that the definition of polypharmacy 

should be based on clinical indication and whether or not the prescribed medication is 

appropriate for the patient, while other studies (Jokanovic et al., 2015; Olson et al., 2014) believe 

that the definition of polypharmacy should be quantitative in nature.  

2.4.1 In regards to Potentially Inappropriate Medications 

One of the most important considerations with polypharmacy and the aging and elderly 

population is polypharmacy with the involvement of potentially inappropriate medications, or 

PIMs. Beers Criteria, STOPP/START, EURO FORTA, and others all make attempts to reduce 

the number of PIMs prescribed to elderly patients.  

A 2015 study of 124,051 Medicare beneficiaries by Lund et al. found that while 

interventions such as the ones noted above have displayed up to an 80% reduction in PIMs 

prescribed to elderly patients either at the point of care or through deprescribing, a significant 
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increase of PIM use in an in-patient setting was still displayed from admission to discharge. 

Lund et al. (2015) found that within their study population 7.7% of patients were prescribed a 

PIM on admission to the hospital and that number increased to 8.6% upon discharge.  

In an Australian study by Price et al. (2014b), they examined the potential association 

between the exposure to PIMs on the Beers Criteria and unplanned hospitalizations in 251,305 

elderly Western Australians. Price et al. (2014b) found that there was a direct correlation 

between overall PIM exposure and an elevated risk of unplanned hospitalizations. Price et al. 

(2014b) also found that the number of different PIMs taken and the quantity were also associated 

with an elevated risk of unplanned hospitalizations. In their study, 15% of unplanned 

hospitalizations of all patients in the study population has been due to PIM exposure and an 

ADE. The findings by Price et al. (2014b) support the theory of the number of PIM exposures a 

patient has, the greater their risk of an unplanned hospitalization. 

2.4.2 In regards to Adverse Drug Reactions and Events 

A serious consequence of polypharmacy are adverse drug reactions or events (ADR or 

ADE). The Institute of Medicine defines adverse drug events as an injury to a patient resulting 

from any medical intervention related to a drug while adverse drug reactions are defined as an 

event in which a patient experienced harm caused by a drug when taken at normal doses 

(Institute of Medicine, 2000). In a perfect world, medications designed to cure or alleviate 

diseases would do just that and not cause further harm or pain to the individual. Unfortunately, 

though, this is not the case. Every individual is different and unique in their own genetic way 

which means that every pharmaceutical has the potential to have a slightly different 

pharmacological action when taken. 
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Research has shown in an in-patient setting, ADEs comprise one-third of all hospital 

adverse events causing an average length of stay increase from 1.7 to 4.6 days, and accounts for 

more than 2 million hospital stays per year (US Department of Health and Human Services 

Office of Disease Prevention and Health Promotion, 2014). Additional research has also shown 

that in an out-patient setting, ADEs cause an estimated 1 million annual emergency department 

(ED) visits, 3.5 million physician or primary care office visits, and 125,000 hospital admissions 

annually (US Department of Health and Human Services Office of Disease Prevention and 

Health Promotion, 2014). Curtin et al. (2019) reports that ADEs contribute directly to 6-17% of 

all hospital admissions for older adults and are commonly overlooked in the elderly population. 

This is because ADEs commonly manifest themselves as common, nonspecific symptoms such 

as fatigue, constipation, confusion, and falls; all of which as generally prescribed to the aging 

process or “just getting old” (Curtin et al., 2019). Curtin et al. (2019, p. 2) made a feasible 

observation in their systematic review that “any new symptom in an older patient should be 

considered a drug side effect until proven otherwise.” 

Research in the area of polypharmacy and adverse drug events is very expansive in 

nature. A 2001 study by Hohl et al. found that in a population of 283 patients taking on average 

4.2 medications per person, ADEs accounted for 10.6% of emergency department admissions 

within that patient sample. In an 11-year analysis by Bourgeois et al. (2010), they found that 

ADEs result in more than 100,000 hospital admissions annually with elderly patients being at the 

highest risk of hospitalization. In a 2012 British study by Calderón-Larrañaga et al. found that 

within a multicenter observational study of 79,089 patients polypharmacy was one of the risk 

factors [OR = 1.34] for an ADE and later subsequent hospital admission. 
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2.4.3 In regards to Long-Term Care Facilities 

Consideration also needs to be given to elderly patients whom are no longer independent 

and reside in long term or assisted care facilities. These patients are more than likely to be taking 

more than one prescription medication, have decreased mobility increasing their susceptibility to 

falls and injuries, and may have cognitive impairment such as dementia (Jokanovic et al., 2015; 

Murray et al., 2004). The elderly and aging populations also pose unique clinical challenges 

when it comes to their treatment and care. For example, this group of patients typically also have 

physiological changes that cause different medications to absorb or excrete at different rates 

(Gokce Kutsal et al., 2009).  

Research has also shown that the involvement of clinical pharmacists in a medication 

review or reconciliation process in long-term care facilities has decreased not only the overall 

number of prescriptions for a patient, but the number of inappropriately prescribed medications 

and adverse drug events, too (Thiruchelvam et al., 2017).  

2.4.3.1 Complexity of medication regimens.  

Jokanovic et al. (2015) presented administrative challenges in his study with regards to 

polypharmacy in long-term care facility patients and their medication regimens. Because of the 

additional number of medications that these patients require, there is a need for the appropriate 

number of employees in the workforce to support and care for their residents (Jokanovic et al., 

2015). In 2009, Mitty performed an online survey of all members of the key assisted living 

professional organizations inquiring about their medication administration practices. She found 

that more than half of the “assisted living residences” (ALRs) administered medications to 

between 80 to 100% of their residents and that almost half of these ALRs use unlicensed 

assistive personnel, or medication aids, to administer said medications to their residents (Mitty, 
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2009). Through a policy review, Mitty (2009) also found that only 14 states require that a 

licensed nurse administer medications and 32 states permit these unlicensed assistive personnel 

to administer medications. Unlicensed assistive personnel do not have a deep level of clinical 

knowledge that should be required in administering medications, especially to a vulnerable 

population such as the elderly. This is worrisome due to the fact that fewer than 10 states require 

the reporting of a medication error or adverse drug event to the patients resident physician 

(Mitty, 2009).  

This point is of specific discussion from an Australian study by Wimmer et al. (2014). 

This study took a specific look at an elderly patient’s medication regimen on discharge and rated 

its complexity using the Medication Regimen Complexity Index (MRCI). Wimmer et al. (2014) 

found patients who had complex medication regimens upon discharge to their home or family 

had no association in future unplanned hospital admissions. Whereas patients with complex 

medication regimens who were discharged to a non-home or long-term care facility had a higher 

chance of an unplanned hospital admission based on the number of discharge medications and 

the presence of polypharmacy (≥ 9 medications) (Wimmer et al., 2014).  

On this topic, Mitty (2019) recommends that the medication aide or medication 

technician certification that only a few states offer to unlicensed ALR personnel should be 

regulated and required across the country. Not only would this provide an opportunity for 

training on proper medication administration and the identification of ADEs, but could also 

mimic the Medical Assistant certification and be one of the first stepping stones for individuals 

to possibly further their career or education.  
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2.4.4 The Prescribing Cascade Effect 

A cause and an effect of polypharmacy is a concept called a prescribing cascade. A 

prescribing cascade is a clinical term that begins when healthcare providers misinterpret a newly 

presenting symptom or an ADE from interacting medications as an entirely new symptom of a 

disease and in turn, prescribes another medication to the patient (Kalisch et al., 2011; Piggott et 

al., 2020). The concept of prescribing cascades, their causes and effects, as well as their clinical 

implications have come under a new light with the growing problem of polypharmacy (Brath et 

al., 2018; McCarthy et al., 2019). The patients that are most at risk for prescribing cascades are 

those with multimorbid conditions and those reliant on others for their care and wellbeing, the 

elderly (Kalisch et al., 2011). Certain classes of medications either when mixed with other 

medications, or if certain conditions are present in the patient, the adverse effect of the added 

medications can become synergistic and amplified all while the physician was trying to provide 

relief to the patient from the first medication’s side effect (Kalisch et al., 2011). For example, 

Brath et al. (2018) describes one of the most well-known prescribing cascades identified almost 

30 years ago which linked nonsteroidal anti-inflammatory drugs (NSAIDs) to the development 

of hypertension and the later prescription of anti-hypertensive medications (Brath et al., 2018). 

Potentially not 30 years ago, but the identification of this cause, effect, and treatment could have 

saved the patient trips to their physician’s office and lessened the amount of healthcare resources 

utilized. 

Prescribing cascades are a serious consequence of polypharmacy, especially given the 

rate at which polypharmacy is seen in elderly, vulnerable populations (McCarthy et al., 2019).  

Kalisch et al. (2011) described a scenario where a more than common prescribing cascade took 

place; an elderly patient was recently prescribed an ACE-inhibitor developed a cough and was 
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later prescribed a codeine-based cough product, as the cough persisted the patient was then 

prescribed an antibiotic which in turn caused the patient to develop Clostridium difficile diarrhea, 

which later caused their hospitalization. This scenario caused an undue amount of harm to the 

patient, caused an unplanned and unnecessary hospitalization, which could have potentially led 

to the death of the patient. The most common medication classes that are typically found to be  

involved with prescribing cascades are drugs for dementia, antihypertensives, sedatives, opioids, 

NSAIDs, antiepileptics, antibiotics, and medicines for nausea (Brath et al., 2018; Kalisch et al., 

2011). All these medication classes are coincidentally found on the Beers Criteria, 

STOPP/START, and other lists of potentially inappropriate medications. Strategies for 

interrupting prescribing cascades and polypharmacy are discussed later in this chapter. 

2.4.5 Strategies for Reducing Polypharmacy 

The primary strategy of reducing polypharmacy in not only elderly patients, but all 

patients, is called “deprescribing.” Deprescribing is defined by Scott et al. (2015, p. 827) as “the 

systematic process of identifying and discontinuing drugs in instances in which existing or 

potential harms outweigh existing or potential benefits within the context of an individual 

patient’s care goals, current level of functioning, life expectancy, values, and preferences.” The 

goal of deprescribing is not to change treatment plans at will on a patient but to provide the 

patient the safest and most effective method of treatment for their condition. When performed 

appropriately for the drug or medication being deprescribed, as shown by a literature review by 

Scott et al. (2015), is a safe practice and often provides benefit to the patient in terms of reduced 

costs, medication burden, and decreased risk of various interactions or unplanned 

hospitalizations.  
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Scott et al. (2012) developed a 10-step conceptual framework for pharmacists and 

clinicians to accomplish two primary goals, first, to select the proper drug based on the patient 

and clinical indication, and second, reduce the number of inappropriate medications prescribed to 

the patient. Each step of the framework presented by Scott et al. (2012) was based on literature 

reviews and presented for use in a stepwise sequence. Shortly after in 2015, Scott et al. revised 

the framework into a condensed five steps: 

• “(1) ascertain all drugs the patient is currently taking and the reasons for each one;  

• (2) consider overall risk of drug-induced harm in individual patients in determining 

the required intensity of deprescribing intervention; 

•  (3) assess each drug in regard to its current or future benefit potential compared with 

current or future harm or burden potential;  

• (4) prioritize drugs for discontinuation that have the lowest benefit-harm ratio and 

lowest likelihood of adverse withdrawal reactions or disease rebound syndromes; and 

• (5) implement a discontinuation regimen and monitor patients closely for 

improvement in outcomes or onset of adverse effects” (Scott et al., 2015, p. 829) 

Using new and advanced technological measures discussed later in this chapter, the 

framework developed by Scott et al. (2012) could easily be streamlined into a useful clinical 

utility once the framework itself is validated for use. 

Research in this area has shown with successful attempts at reducing polypharmacy and 

the number of medications prescribed to a patient. A 2010 study by Garfinkel and Mangin 

applied the Good Palliative-Geriatric Practice algorithm to a sample of 70 elderly patients in an 

attempt to reduce polypharmacy and the “medication burden” on these patients (Garfinkel & 

Mangin, 2010, p. 1648). Using this algorithm, Garfinkel and Mangin (2010) recommended the 
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discontinuation of 311 medications in 64 of the 70 participants, an overall 81% reduction in 

polypharmacy with no reported significant adverse drug events due to the discontinued 

medications. 

Another strategy for decreasing polypharmacy was developed by Drenth-van Maanen et 

al. (2009) called the Prescribing Optimization Method or POM. The POM was designed to assist 

family and general medicine physicians reduce the amount of polypharmacy on their elderly 

patients through 6 guided questions: 

• “Is undertreatment present and addition of medication indicated; 

• Does the patient adhere to his/her medication schedule;  

• Which drug(s) can be withdrawn or which drugs(s) is/are inappropriate for the 

patient;  

• Which adverse effects are present;  

• Which clinically relevant interactions are to be expected; and  

• Should the dose, dose frequency and/or form of the drug be adjusted” (Drenth-van 

Maanen et al., 2009, pp. 690-691) 

To test the efficiency of the newly designed POM tool, Drenth-van Maanen et al. (2009) 

first asked 45 physicians to review and deprescribe medications from two patients randomly 

selected from a pool of ten. Following this, the group of physicians were trained on the POM 

framework and optimization process then asked to perform the review and deprescribing process 

again on the same case. What Drenth-van Maanen et al. (2009) found was an increase in 

appropriate prescribing optimization from 34.7% pre-POM training to 48.1% post-training. 

Overall, the POM framework significantly increased valid deprescribing decisions in complex 

multimorbid elderly patients (Drenth-van Maanen et al., 2009).  
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2.4.5.1 ARMOR. 

In 2009, Dr. Raza Haque, MD developed the ARMOR tool to address the growing 

problem of polypharmacy seen in long-term care facilities. The ARMOR tool has five 

components, Assess, Review, Minimize, Optimize, and Reassess, and when implemented and 

used properly will consider not only the patient’s pharmaceutical profile, but their clinical history 

and their overall functional status (Haque, 2009). The first implementation of the ARMOR 

protocol was after its development by Haque (2009) in a long-term care facility using an 

interdisciplinary team of medical professionals to target geriatric admissions and those patients 

with frequent falls. This interdisciplinary team consisted of a medical director, director level 

nursing staff, occupational and recreational therapists, social workers, and pharmacists (Haque, 

2009). The ARMOR process for managing polypharmacy begins with a regular review and 

analysis of the patient’s charts to examine dosing as well as the presence of inappropriate 

medications (Haque, 2009). The team members would then report on their subjective and 

objective observations of the patient as well as any proposed changes to their current medication 

regimen (Haque, 2009). After a consensus was reached for each patient’s profile, the facilities 

medical director would discuss the team’s recommendations for modifications to the patient’s 

care (Haque, 2009). 

The ARMOR tool for reducing polypharmacy was effective in significantly reducing 

polypharmacy, the cost of care, and the number of hospitalizations from patients within the 

specific long-term care facility (Haque, 2009). Haque (2009) also found that the ARMOR tool 

reduced the number of falls and patient behaviors that may lead to self-harm. Given the results of 

ARMOR’s first use, Haque (2009) expanded the scope of included patients to those receiving 9 

or more medications and those admitted for rehabilitation. Haque (2009) found significant 
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improvement in the facilities quality indicators (QI) tracked by the facility in comparison to their 

state and national averages. In a follow-up study by Haque and Alavi (2019) found that utilizing 

ARMOR with an interdisciplinary team saw a significant reduction in the number of 

psychotropic medications prescribed to LTC patients within the study’s facility. This finding is 

particularly important because psychotropic medications have been shown to have a significant 

association with falls in elderly patients (Huang et al., 2012). Studies have shown that falls are 

not only one of the leading causes of elderly hospitalizations and healthcare expenditures, but 

happen to also be one of the leading causes of morbidity and mortality in elderly patients with 

multiple co-morbidities (Rondi Gelbard et al., 2014; Huang et al., 2012). 

2.4.5.2 The Brown Bag Method. 

The brown bag method or brown bag approach is a well employed method for reducing 

polypharmacy in various clinical settings. The brown bag method is a medication review process 

where the patient collects all their medications including prescriptions, over-the-counter 

medications, vitamins, and herbal supplements together and brings them into their next provider 

appointment (Dovjak, 2012; Kim & Parish, 2017). The goal of the brown bag method is to 

review all of the patient’s medications, identify medications that can be discontinued, 

medications or supplements that could be causing interactions, reconcile the patient’s “brown 

bag” with the medications listed in their medical record, and to educate the patient on their use of 

their medications (Kim & Parish, 2017). Studies have shown this to be an effective method of 

not only reducing the number of medications the patient is taking, but reducing the number of 

potential adverse drug events as well. 

In a 2015 study by O’Connell et al., found in a population of 85 patients in a convenience 

sampling from a senior center, that 40% of the patient’s drug-related problems were due to 
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inappropriate drug selections on behalf of the prescriber, and 23% due to inappropriate doses 

being prescribed to the patent. The study found due to the patient’s level of comfort with the 

brown bag review process begin able to talk and ask questions in a comfortable environment, 

63% of the recommendations made by the clinical staff were implemented by the participants 

(O'Connell et al., 2015). Interestingly, a 2004 study by Williams et al. found that the patients 

who participated in a randomized control trial to receive a brown bag medication review that 

most patients who participated and received suggested changes to their medication regimens 

were hesitant to make such changes. Williams et al. (2004) cite one of the reasons why patients 

may have been resistant to the suggested changes because their primary physician was not 

directly involved in the medication review process. Williams et al. (2004) found that only 33% 

of the time, patients who were involved in the medication review process accepted the 

recommendations of the reviews only after they were told their primary physician was informed 

of and approved the recommended changes. In a similar type study by Garfinkel (2017) found 

that in some cases it’s not the patient that is resistant to the change in regimen, it’s the physician 

themselves.  

2.4.6 Addressing Polypharmacy in the Primary Care Setting 

One area lacking in the literature regarding polypharmacy is addressing the topic at one 

of the initial points of contact, the primary care setting. Especially in the elderly population, 

building a strong patient-physician relationship is crucial. Studies on the topic dating back to 

1996 emphasize this point and the physician should lay the ground work starting with the initial 

meeting with the patient (McCormick et al., 1996). A 2015 literature review confirmed a known 

gap in the literature, the need for standardized strategies in addressing polypharmacy in the 

primary care setting and the effects of these interventions on patient outcomes. Nevertheless, 
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addressing polypharmacy in any way possible is important on behalf of the patient overall care 

and wellbeing. 

2.5 Predicting Readmissions 

We have shown there is an understanding of how Beers Criteria, different potentially 

inappropriate medications, adverse drug events, and unplanned hospitalization rates are all 

associated with each other through different studies in the literature. Researchers have begun to 

take the information they have learned and the data they have available to them in attempts to 

build a model able to predict a future hospital admission or indicate a patient may be at risk for a 

future hospitalization. There is a vast amount of literature on the topic of predicting readmissions 

but we have found that many published studies are focused on a specific disease state or chronic 

condition. For example, a 2016 study by Tandon et al. attempts to predict unplanned 

hospitalizations in patients with cirrhosis, a 2014 study by Manzano et al. attempts to determine 

patterns and predictors of unplanned hospitalizations in elderly patients with GI cancer, or a 

2019 study by Rothenberg et al. attempting to predict unplanned admissions after elective 

outpatient surgery. There are very few pieces of published literature that use Beers Criteria 

medications, or other PIM lists, in an attempt to build a prediction model for unplanned 

hospitalizations.  

A 2014 study by Louis et al. displays an attempt at building a risk of hospitalization 

prediction tool in 3,726,380 adults over the age of 18 in a specific region of Italy. While this 

study is not specific to elderly patients, the outcomes are substantial and should be discussed. 

The prediction model built by Louis et al. (2014) was able to predict hospitalizations in the 

cohort of patients with a c-statistic of 0.856 overall. This specific model took into consideration 

the patient’s age, gender, demographics, healthcare utilization, cardiovascular disease, diabetes, 
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chronic renal failure, a history of cardiovascular medications, and the presence of polypharmacy; 

all variables used by Louis et al. (2014) are also available in the dataset for this study (Louis et 

al., 2014). Louis et al. (2014) also tested their 2012 prediction model built from 2011 data on 

data available from 2010 to build a 2011 prediction model. Louis et al. (2014) found between the 

two year’s models built, there was only a slight change in c-statistic (2011 = 0.853, 2012 = 

0.856). This indicated to Louis et al. (2014) the model build can be used on future data as it 

becomes available and provide reliable results.   

A second readmission prediction tool, the 80+ Score, which takes into consideration 

patient demographics as well as their pharmacologic data as well (Alassaad et al., 2015). The 

80+ score was built and internally validated against a sample of 368 elderly patients who were 80 

years or older from a Swedish university medical center (Alassaad et al., 2015). The 80+ score 

and the study by Alassaad et al. (2015) is one of the first studies to include the patients’ 

medication history as one of the potential indicators or causes for an unplanned hospital 

readmission. The final model for the 80+ score by Alassaad et al. (2015) included the following 

risk factors: eGFR separated into for levels of kidney function, social support (i.e. discharge 

location, nursing home vs. family home), presence of pulmonary diseases (asthma or COPD), 

presence of malignant diseases, use of prescription drugs for peptic ulcers or GERD, use of 

prescription opioids, and use of prescription non-TCA-antidepressants. The 80+ score is based 

on a point-scoring system and is presented in figure three. The 80+ score, to my knowledge at 

the time of this writing, is the only prediction model for unplanned hospitalizations that includes 

a patients prior pharmaceutical history with a c-statistic >0.7, at 0.72 (Alassaad et al., 2015). 

While the 80+ score is only internally validated, Schwab et al. (2019) make reference to the 

prediction model and the potential necessity to externally validate it for greater use. 
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Figure 3: Data used for the 80+ point scoring system 

 
(Alassaad et al., 2015, p. 3) 

An additional prediction model built by LaMantia et al. (2010) was able to produce a c-

statistic of 0.73 when the model included age, triage score, heart rate, diastolic blood pressure, 

and the patient’s chief complaint. This model is different than the goal of this study though, 

LaMantia et al. (2010) built a model in an attempt to streamline hospital admissions for elderly 

patients presenting directly to the ED, not to predict unplanned hospitalizations. LaMantia et al. 

(2010) attempted to further extrapolate their model attempting to predict another ED visit 30 

days post-discharge in the same population of elderly patients, this modeling attempt also failed 

the c-statistic threshold. LaMantia et al. (2010) attributed the inability to build such a prediction 

model to the high rate of return in elderly patients to emergency departments ranging from their 

chronic medical conditions, to inadequate primary care availability, to the patient’s social or 

psychological characteristics. 
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Other attempts at building prediction models for unplanned hospitalizations have not 

been as successful as the 80+ score by Alassaad et al. (2015). A study by Parameswaran Nair, 

Chalmers, Connolly, et al. (2016) attempted to build a prediction model they called the 

Prediction of Hospitalization due to Adverse Drug Reactions in Elderly Community-Dwelling 

Patients, or PADR-EC. This model was built off a patient sample of 768 patients aged 65 years 

or older with admission to two specified Italian hospitals. Parameswaran Nair, Chalmers, 

Connolly, et al. (2016) found that even with 92.2% of the total admissions (n = 115), their model 

to predict hospitalization in these patients only yielded a ROC c-statistic of 0.70 which decreased 

to 0.67 in a later validation sample of patients. 

2.5.1 In regards to Adverse Drug Events 

In a 2015 German study by Henschel et al., they sought to understand the hospitalization 

rates for 647,073 patients aged 65 years or older as of the year 2010 and received a PIM as 

indicated by the German PRISCUS list of inappropriate medications. Henschel et al. (2015) used 

propensity score matching to build a control group of patients at an equivalent risk level but who 

did not receive any of the medications on the PRISCUS list. Despite using a different PIM 

criteria list local to Germany, the outcome of this study echoes what is seen already through the 

literature. Henschel et al. (2015) found patients in the PIM group experienced more ADEs and 

had a higher chance of hospitalization when compared to the non-PIM control group. 

In a 2017 study by Shapiro et al. studying high-risk medications in 717 frail elderly 

patients in a long-term care facility, having more than more than four medications doubled the 

risk of readmission within 30-days of their initial discharge. The patients in the Shapiro et al. 

(2017) study though, have a much higher mean count of medications per person (14.1) and a 
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higher mean Charlson comorbidity index score (≥6) than seen in other published literature thus 

far.  
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3) CHAPTER III METHODOLOGY 

As previously mentioned, the data used in this study is the dataset used by O’Neill 

Roldan’s (2018) study, Effect of Beers criteria on healthcare utilization and costs in community-

dwelling elderly patients. The initial patient sample was extracted from the 2013 edition of the 

Truven Health Marketscan® Commercial Claims and Encounters Database purchased by and 

housed at the Comparative Effectiveness & Data Analytics Research Resource (CEDAR) at the 

Medical University of South Carolina, Charleston, SC. All statistical analysis performed using 

SAS 9.4 (Cary, NC) at α = 0.05. 

3.1 Original Data Use by O’Neill Roldan (2018) 

O’Neill Roldan’s 2018 retrospective cohort study identified patients 65 years and older, 

who were community-dwelling patients, and were observed taking a medication present on the 

Beers Criteria during the selected baseline period of January 1, 2013 – March 31, 2013 (n= 

3,512,540) from within the 2013 edition of the Marketscan® database. Once the initial patient 

sample was extracted, O’Neill Roldan grouped the patients based on those whom had taken at 

least one medication on the 2012 revision of the Beers Criteria and those who had not (n= 

1,297,636 vs. 2,214,904), this step is crucial in the preparation of the propensity score matching 

process. Because the Marketscan® database contained commercial claims, the study was not 

limited to only the claims submitted to Medicare but was able to include those elderly patients 

that had commercial insurance to supplement their existing Medicare plan (O’Neill Roldan, 

2018).  

To select patients to place in the experimental, or Beers Criteria, arm of the study, 

O’Neill Roldan (2018) needed to translate the list of potentially inappropriate medications on the 

Beers Criteria into their individual National Drug Code (NDC), including secondary codes such 
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as packaging type or packaging quantity changes. The NDC is comprised of three components, 

first the labeler or manufacturer identifier, second the product code which identifies the strength, 

dosage form, and formulation, and third the package code to distinguish between different sizes 

and types (U.S. Food and Drug Administration, 2019). O’Neill Roldan (2018) reported that the 

138 medications on the Beers Criteria were converted to a total of 73,644 NDC codes to identify 

the patients needing to be included in the experimental arm of the study. Inclusion into the 

control arm of O’Neill Roldan’s study required the absence of any of the NDC codes identified 

as being a PIM on the Beers Criteria.  

Once O’Neill Roldan (2018) constructed the two sample groups, the study then built a 

Charlson Comorbidity Index score and a frailty index score which was then subdivided into three 

dichotomous variables, robust, pre-frail, and frail. O’Neill Roldan (2018) also included a 

dichotomous variable to indicate if the patient had any type of hospital admission during the 

selected baseline period. O’Neill Roldan also used information from outpatient visits to construct 

an Elixhauser Comorbidity Index score as well as a dichotomous variable for 26 of the 29 

Elixhauser conditions indicating their presence for each patient in the dataset, see table 3. As an 

extension from the Marketscan® database, O’Neill Roldan (2018) was also able to leverage the 

information contained within the Marketscan® database to calculate the patient’s total inpatient, 

outpatient, and prescription medications costs as well. Because the Marketscan® database 

included prescription drug data and claim information, this was one of the primary reasons 

O’Neill Roldan (2018) selected this data source. 
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Table 1 

Elixhauser Comorbidity conditions included and excluded 

Included Excluded 

Asthma 

Cardiac Dysrhythmias 

Chronic Obstructive Pulmonary Disease 

Chronic Renal Failure 

Conduction Disorders of the Heart 

Congestive Heart Failure 

Cystic Fibrosis 

Diabetes with and Without Chronic 

Complications 

Diverticulosis and Diverticulitis 

Epilepsy 

Heart Valve Disorders 

Hepatitis 

HIV Infection 

Hypertension 

Multiple Sclerosis 

Otitis Media (Middle Ear Infection) 

Parkinson’s Disease 

Pericarditis 

Endocarditis and Myocarditis 

Pulmonary Heart Disease 

Rheumatoid Arthritis 

Schizophrenia 

Senile 

Sickle Cell Anemia 

Systemic Lupus Erythematosus 

Vertigo 

Chronic Ulcers of the Skin 

Late Stroke 

Paralysis 

  

(O'Neill Roldan, 2018) 

The treatment and control sampling methodology from O’Neill Roldan (2018) is 

presented in figure 3.1.1 below. 
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Figure 4: Treatment and Control Sample Design 

 
(O'Neill Roldan, 2018) 

With the selection and grouping of the patient sample based on the presence of any Beers 

Criteria medications, O’Neill Roldan (2018) could then begin the propensity score matching 

process between the two patient groups. Propensity score matching is the process of assigning a 

score to a subject in an observational or retrospective study equaling the conditional probability 

of that subject being included in the treatment arm of the study (Austin, 2011; Gant & Crowland, 

2017). Propensity score matching allows researchers to reduce confounding between variables 
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and allows for observational or retrospective types of studies to mimic the structure of a 

randomized control trial (Gant & Crowland, 2017). O’Neill Roldan (2018, p. 81) used the 

following variables to match patients in both arms of the study: “age, gender, geographic region, 

hospital admission, member days [days insured], frailty, Charlson Comorbidity Index, and the 26 

Elixhauser Comorbidity Indicators.” Through the use of these matching variables, O’Neill 

Roldan (2018) was able to complete a 1:1 propensity score match between all 1.297 million 

patients in the Beers arm of the study to 1.297 million patients in the control arm. Those patients 

in the control arm of the study were removed from the data set if they were not matched to a 

patient in the experimental arm of the study.  

A data dictionary containing the variables and descriptions from the data used by O’Neill 

Roldan (2018) is available in Table 18.  

3.1.1 Propensity Score Matching 

Many studies that examine the relationship between PIMs and unplanned hospitalizations 

utilize a statistical method called propensity score matching. Propensity score matching is the 

process in which a study is able to mimic randomization between a control and experimental 

group when using retrospective data or if the study has already begun without randomization 

taking place (Henschel et al., 2015). The propensity score matching process allows researchers to 

directly compare the effect of an intervention on two groups of participants in the matched 

sample (Austin, 2011).  

3.2 Research Design and Secondary Use of Data Set 

Our study is a retrospective cohort study using propensity-score matched patients in a 

Beers Criteria medication exposed and non-exposed group. The Beers Criteria classification and 

propensity-score matching was performed by O’Neill Roland (2018) and augmentations of that 
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dataset would be necessary to fit the purposed of this study. The first set of data augmentations 

needed required the extraction of data for hospital admissions and emergency department visits 

for the specific ICD-9 codes for falls and fractures, and confusion and delirium. To achieve this, 

the patients ENROLID was matched back to the original MarketScan® data set and the primary 

ICD-9 code for the admission was identified. The presence of an ICD-9 code for falls present in 

Table 2 was indicated in the dataset as (falls=1) and the presence of an ICD-9 code for confusion 

and delirium admissions present in Table 3 was indicated in the dataset as (dill=1). These 

dichotomous variables were set to “0” if the primary ICD-9 code for the admission was not 

present in the inclusion list. 

Within the augmented dataset was created drug sub-group specifications for the specific 

medication classes associated with falls, delirium, and confusion and a residual group named 

“Other Beers Drugs” to capture the use of any other Beers Criteria medication not specific to a 

named medication class. These Beers Criteria indicator variables are discussed in more detail in 

section 3.2.2 below. The final dataset contained roughly 2.6 million patients and through the 

propensity score matching by O’Neill Roldan (2018), this dataset had 1,297,627 patients who 

took any Beers Criteria medications during January – March 2013 and an equal amount of 

patients who took no Beers Criteria medications in January – March 2013. 

3.2.1 Indicator Variables 

To identify and construct indicator variables for falls and fractures, this study selected 

ICD-9 “E” codes – “E” for external causes of injuries and poisonings. Listed in Table 2, the 

selected ICD-9 codes for falls and fractures ranged from accidental falls from stairs or steps, 

slipping, tripping or stumbling, to fractures. The same procedure was performed for confusion 
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and delirium admissions. Listed in Table 3, this study considered drug-induced delirium, 

subacute delirium, reactive confusion, psychoses, hallucinations, and altered mental status. 

Table 2 

List of ICD-9-CM codes for identification of falls 

E Code Code Description 

E880 Accidental fall on or from stairs or steps 

E881 Accidental fall on or from ladders or scaffolding 

E882 Accidental fall from or out of building or other structure 

E883 Accidental fall into hole or other opening in surface 

E884 Other accidental falls from one level to another 

E885 Accidental fall on same level from slipping tripping or stumbling 

E886 Fall on same level from collision, pushing, or shoving, by or with other person 

E887 Fracture, cause unspecified 

E888 Other and unspecified fall 

 

Table 3 

List of ICD-9-CM codes for identification of delirium 

ICD-9 Code Code Description 

292.81 Drug-induced delirium 

293.0 Delirium due to conditions classified elsewhere 

293.1 Subacute delirium 

298.2 Reactive confusion 

298.9 Unspecified psychosis 

780.1 Hallucinations 

780.97 Altered mental status 

 

The presence of either a fall or fracture ICD-9 “E” code, or a confusion or delirium ICD-

9 code was indicated in the dataset using the “Falls” or “Dill” indicator variable. The value of 1 

indicated the presence and the value of 0 indicated the absence.  

3.2.2 Selected Beers Criteria Medication Classes 

Following the creation of the falls and delirium admission indicator variables, two 

categorical variables were created to indicate the Beers Medication class present for the patient. 



45 

 

Table 4 indicates the Beers Criteria medication classes selected for falls and fractures and Table 

5 indicates the Beers Criteria medication classes selected for confusion and delirium.  

Table 4 

Selected Beers Medication classes for falls and fractures 

Medication Class Label 

Antipsychotics APsyco 

Barbiturates Barbit 

Benzodiazepines Benzo 

Sedatives Sedativ 

Tricyclic antidepressants TCA 

 

Table 5 

Selected Beers Medication classes for confusion and delirium 

Medication Class Label 

Antihistamines AHist 

Antipsychotics APsycho 

Benzodiazepines Benzo 

Narcotics Narcoti 

 

All other Beers Criteria medication classes were indicated using an “OtherBeers” 

category. If the patient was not exposed to any Beers Criteria medications, they were indicated 

using the “NoBeers” category. 

3.3 Statistical Analysis 

To begin the statistical analysis of this dataset, we will begin by determining the 

frequency of the categorical variables and the means and standard deviations of the continuous 

variables to build a patient descriptive characteristics table grouped by the Beers Criteria 

medication indicator (AnyBeers). Significant differences between the two groups will be 

determined using Pearson Chi-square tests for categorical variables and either Nonparametric 
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methods, such as the Mann-Whitney U two-sample test, or using independent-samples t-tests for 

non-normally and normally distributed continuous data, respectively.   

Once the most frequent conditions are identified in the dataset, we will then be able to 

study the association between various Beers Criteria medication classes these patients are taking 

and the presence of hospital admissions. Significance between these categorical variables will be 

determined using the Pearson Chi-square test, Elixhauser conditions that show significant 

differences between the two patient sample groups will be identified and used as a starting point 

for further analysis. Based on the specific Elixhauser conditions that are selected to build models 

for, we will construct sub-tables to show the specific patient demographics for the selected 

Elixhauser conditions.  

Once associations are determined and ranked based on statistical significance, we then 

used a multiple regression model to control for the variables to determine which in our dataset 

would contribute significantly to a model. The regression models will consider the 26/29 

Elixhauser conditions, patient demographics, frailty measures, and the patient’s calculated 

Charlson Comorbidity Index score. A gamma log-linked regression model will be used to 

determine costs for each of the selected Beers medication classes for inpatient, outpatient, and 

pharmacy Rx specific costs as well as an estimated total study cost as compared to the NoBeers 

baseline costs. 

3.4 Protection of Human Subjects 

This study is exempt from the MUSC Institutional Review Board processes as the data 

analyzed does not meet the criteria for human subjects as per the definition contained in the 

MUSC Human Research Protection Program guide, section 1.3 Definition of Terms, page 12, 

item 106 Human Subject. The data used in this study is deidentified to meet the criteria listed in 
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MUSC Human Research Protection Program guide, section 1.3 Definition of Terms, page 7, item 

53, part B, containing none of the 18 personal identifiers. 
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4) CHAPTER IV RESULTS 

The patient sample in this study (n = 2,595,254) was first analyzed following the same 

grouping methodology as used by O’Neill Roldan (2018) using the AnyBeers variable to group 

patients based on their use of Beers Criteria medications during the study period. This structuring 

of the dataset retains the propensity score matching as completed by the original study. Through 

this analysis it was determined that the study population for both Beers and non-Beers use was 

predominately female and were roughly 74 years of age. Patients in the Beers versus non-Beers 

categories were more frail (0.451 vs. 0.353, p < 0.0001), had a higher mean Charlson score (0.09 

vs. 0.07, p < 0.0001), and had a significantly larger number of delirium (43,117 vs. 25,727, p < 

0.0001) and falls (32,725 vs. 26,255, p < 0.0001) admissions than the non-beers group. It was 

determined there was a statistically significant difference in total treatment cost between the two 

groups as well. Patients in the Beers group had a total mean treatment cost of almost $15,000, 

which is roughly $6,400 dollars more than the non-Beers group ($14,987 vs. 8,580, p < 0.0001). 

Patients exposed to Beers medications also experienced a significantly larger number of 

hospitalizations for any reason as compared to the non-Beers patients (213,106 vs. 130,489, p < 

0.001). Additionally, when comparing the average length of stay between the Beers and non-

Beers patients, it was determined that the additional one-half day difference in length of stay was 

significant between the Beers and non-Beers patients (6.63 vs. 6.11, p < 0.0001). 

 

 

 

 



49 

 

Table 6 

Descriptive statistics for all patients by Beers Criteria medication status 

Characteristic 

Patients receiving no 

Beers Medications  

(n = 1,297,627) 

Patients receiving ≥1 

Beers Medications  

(n = 1,297,627) p-value 

Age, years 74.06 ± 6.9 73.93 ± 6.8 <.0001 

Hospital Admissions/person 1.197 ± 0.6 1.263 ± 0.7 <.0001 

Patients with Any Hospital Admission 130,489 (10.1%) 213,106 (16.4%) <.0001 

Charlson Score 0.07 ± 0.5 0.09 ± 0.6 <.0001 

Length of Stay, days 6.11 ± 9.4 6.63 ± 9.8 <.0001 

Delirium Admissions 25,727 (2.0%) 43,117 (3.3%) <.0001 

Falls Admissions 26,255 (2.0%) 32,725 (2.5%) <.0001 

Female 750,416 (57.8%) 757,171 (58.3%) <.0001 

Frailty Category   <.0001 

Frailty Cat 0 (Robust) 949,620 (73.2%) 930,800 (71.7%)  
Frailty Cat 1 (Pre-frail) 300,759 (23.2%) 311,359 (24.0)  
Frailty Cat 2 (Frail) 47,248 (3.6%) 55,468 (4.3%)  

Frailty Score 0.35 ± 2.2 0.45 ± 2.4 <.0001 

Insured Days (Member Days) 355 ± 41.8 355 ± 43.5 <.0001 

Geographical Region   <.0001 

Region 1 (Northeast) 293,690 (22.6%) 291,603 (22.5%)  
Region 2 (North Central) 356,401 (27.5%) 359,885 (27.7%)  
Region 3 (South) 372,216 (28.7%) 378,048 (29.1%)  
Region 4 (West) 263,344 (20.3%) 257,402 (19.8%)  
Region 5 (Unknown) 11,976 (0.9%) 10,689 (0.8%)  

Total Treatment Cost $    8,580 ± 30,962 $   14,987 ± 36,033 <.0001 

Inpatient Cost $    2,566 ± 16,055 $     4,760 ± 23,238 <.0001 

Outpatient Cost $    4,912 ± 23,962 $     7,492 ± 21,909 <.0001 

Pharmacy (Rx) Cost $      1,102 ± 3,633 $       2,734 ± 5,590 <.0001 
*Data expressed as mean ± standard deviation (SD) or otherwise indicated as Number (%), and compared by t-test or by Mann-

Whitney U-test. 

4.1 Falls and Fractures 

When considering the patient population (n = 2,595,254) in regards to falls and fractures 

admissions, the analysis determined between the falls patients (n = 58,980) and non-falls patients 

(n = 2,536,274) had a larger gap in age (77.52 vs. 73.91, p < 0.0001) and both groups again 

being predominately female (65.8% vs. 57.9%, p < 0.0001). The patients who experienced a 

fall/fracture admission, similarly to the Beers exposure grouping discussed in the last section, the 
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falls patients had a significantly higher Charlson score (0.19 vs. 0.08, p < 0.0001) and frailty 

score (1.78 vs. 0.37, p < 0.0001) as compared to patients without a fall or fracture admission. 

The falls patients in the study population also experienced a significantly longer average length 

of stay (7.84 vs. 6.32, p < 0.0001) and a significantly higher mean number of hospital admissions 

per person (1.354 vs. 1.23, p < 0.0001). Interestingly, patients without falls admissions, 49.9% of 

these patients were taking at least one Beers Criteria medication. Geographically the analysis 

determined the majority of the falls and fractures patients were located in the North Central 

region while the majority of non-falls patients were located in the South region. Lastly, there is a 

$15,820 dollar difference in total treatment cost between the patients with falls admissions and 

those without ($27,244 vs. $11,424, p < 0.0001). 
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Table 7 

Descriptive statistics for all patients by falls admission 

Characteristic 

Patients with no falls 

admissions  

(n = 2,536,274) 

Patients with falls 

admissions  

(n = 58,980) p-value 

Age, years 73.91 ± 6.8 77.52 ± 7.1 <.0001 

Hospital Admissions/person 1.23 ± 0.6 1.354 ± 0.8 <.0001 

Patients with Any Hospital Admission 318,748 (12.3%) 24,847 (1.0%) <.0001 

Patients taking Any Beers Medications 1,264,902 (49.9%) 32,725 (55.5%) <.0001 

Falls Admissions/person --- 2.6 ± 3.5  

Fall Drug Days 0.86 ± 21.7 2.82 ± 37.7 <.001 

Charlson Score 0.08 ± 0.6 0.19 ± 0.8 <.0001 

Length of Stay, days 6.32 ± 9.6 7.84 ± 10.7 <.0001 

Female 1,468,759 (57.9%) 38,828 (65.8%) <.0001 

Frailty Category   <.0001 

Frailty Cat 0 (Robust) 1,851,882 (73.0%) 28,538 (48.4%)  

Frailty Cat 1 (Pre-frail) 590,096 (23.3%) 22,022 (37.5%)  

Frailty Cat 2 (Frail) 94,296 (3.7%) 8,420 (14.3%)  

Frailty Score 0.37 ± 2.3 1.78 ± 3.5 <.0001 

Insured Days (Member Days) 355 ± 42.8 357 ± 33.3 <.0001 

Geographical Region   <.0001 

Region 1 (Northeast) 572,041 (22.6%) 12,892 (21.9%)  

Region 2 (North Central) 697,119 (27.5%) 19,167 (32.5%)  

Region 3 (South) 736,512 (29.1%) 13,752 (23.3%)  

Region 4 (West) 508,093 (20.0%) 12,653 (21.4%)  

Region 5 (Unknown) 22,149 (0.9%) 516 (0.9%)  

Total Treatment Cost $  11,424 ± 33,350 $   27,244 ± 45,144 <.0001 

Inpatient Cost $    3,499 ± 19,677 $   10,742 ± 30,069 <.0001 

Outpatient Cost $    6,018 ± 22,897 $   14,115 ± 25,644 <.0001 

Pharmacy (Rx) Cost $      1,907 ± 4,705 $       2,387 ± 7,420 <.0001 
*Data expressed as mean ± standard deviation (SD) or otherwise indicated as Number (%), and compared by t-test or by Mann-

Whitney U-test. 

4.1.1 Medication Class Frequency Analysis 

Utilizing the Beers Criteria medication classes selected as ones causing disruptions in 

balance and gait which could lead to an injurious fall, a frequency analysis on the prevalence of 

each medication class by falls and non-falls patients was performed. For the purposes of this 

portion of the analysis, the Beers Criteria medication classes selected were: antipsychotics, 

barbiturates, benzodiazepines, sedatives, and tricyclic antidepressants. It was determined that in 
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the study population the most commonly used medication class in patients with falls admissions 

were benzodiazepines (n = 10,598), followed by antipsychotics, sedatives, tricyclic 

antidepressants, and lastly barbiturates (n = 4,008; 2,040; 898; and 231 patients respectively). 

For the non-falls patients, it was determined the most frequently used medication class was also 

benzodiazepines (n = 354,080), but was followed by sedatives (n = 94,429), not antipsychotics as 

with the falls patients. Following sedative use with the non-falls patients were antipsychotics, 

tricyclic antidepressants, and lastly barbiturates (n = 58,753; 33,999; and 9,878 patients 

respectively). A lower overall percentage of falls patients were found to be taking a medication 

in any other Beers Criteria medication class or no Beers medications at all as compared to the 

non-falls patients (Other Beers: 25.4% vs. 28.2%; No Beers: 44.5% vs. 50.1%, p < 0.0001). 

Table 8 

Incidence of falls admissions by Beers Medications categories 

 

Patients with no fall 

admissions  

(n = 2,536,274) 

Patients with ≥1 fall 

admission 

(n = 58,980) p-value 

Beers Criteria Grouping   <.0001 

Antipsychoticsa 58,753 (2.3%) 4,008 (6.8%)  
Barbiturates 9,878 (0.4%) 231 (0.4%)  

Benzodiazepinesb 354,080 (14.0%) 10,598 (18.0%)  

Sedativesc 94,429 (3.6%) 2,040 (3.5%)  

TCAd 33,999 (1.3%) 898 (1.5%)  

Other Medication Classese 715,763 (28.2%) 14,950 (25.4%)  

No Beers Medications Present 1,271,372 (50.1%) 26,255 (44.5%)  
a Includes first- and second-generation antipsychotics 

b Includes short- and long-acting benzodiazepines 

c Includes Nonbarbiturate and nonbenzodiazepine sedatives hypnotics 

d Includes tertiary tricyclic antidepressants 

e Includes any other classification of Beers Criteria medications 

4.1.2 Logistic Regression Results 

A logistic regression analysis was performed to determine if there is an increase in risk of 

hospitalization from falls between patients taking each of the specified Beers potential fall risk 

medication classes listed in section 4.1.1 compared to those taking no Beers medications. The 
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five medication classes, along with an “Other Beers Medication” categorical variable was 

compared against a baseline of the “No Beers Medications” category. The analysis determined 

antipsychotics posed the highest risk of an injurious fall or fracture by 1.93 times (95% CI: 

1.865, 2.007), benzodiazepines increased hospitalization due to fall risk by 1.37 times (95% CI: 

1.341, 1.405), tricyclic antidepressants by 1.34 times (95% CI: 1.245, 1.427), and lastly, 

barbiturates increased this risk by 1.3 times (95% CI: 1.13, 1.472). Sedatives only increased the 

risk of hospitalization by 1.18 times (95% CI: 1.13, 1.427) while patients taking any other 

medications present on the Beers Criteria were found to have only a very slight risk increase of 

1.07 times (95% CI: 1.051, 1.095).  

In addition to the specific Beers Criteria medication classes this study analyzed, it is 

worth noting other patient characteristics in the final logistic regression model that also had a 

significant increase in risk of a fall or fracture admission. One of these characteristics most 

notably is the changes in frailty category. Using a robust patient as the baseline (frailcat_0), 

patients who moved into the pre-frail category had a 1.8 times (95% CI: 1.777, 1.847) increase in 

hospitalization risk while patients who moved into the frail category had a 2.7 times (95% CI: 

2.595, 2.778) increase in risk. This study was able to control for a significant number of 

Elixhauser Comorbidity and frailty indicators and through these additional controlling variables, 

the regression analysis found patients diagnosed with Cystic Fibrosis had a 2.43 times (95% CI: 

1.175, 5.06) increase in risk of hospitalization and patients with Multiple Sclerosis were at a 2.0 

times increase in risk (95% CI: 1.766, 2.283).  
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Table 9 

Logistic regression results for falls 

Variable  β 

Odds Ratio 

(=eβ) OR 95% C.I. p-value 

Intercept -9.6497 
  

<.0001 

BeersCat - APsyco vs No Beers 0.4089 1.935 [1.865, 2.007] <.0001 

BeersCat - Barbit vs No Beers 0.00342 1.290 [1.13, 1.472] 0.953 

BeersCat - Benzos vs No Beers 0.0655 1.372 [1.341, 1.405] <.0001 

BeersCat - OtherRx vs No Beers -0.1807 1.073 [1.051, 1.095] <.0001 

BeersCat - Sedativ vs No Beers -0.0824 1.184 [1.13, 1.239] 0.0002 

BeersCat - TCA vs No Beers 0.0364 1.333 [1.245, 1.427] 0.2426 

AGE 0.055 1.057 [1.055, 1.058] <.0001 

MEMDAYS 0.00381 1.004 [1.004, 1.004] <.0001 

Male -0.3325 0.717 [0.705, 0.73] <.0001 

Region_2 0.1849 1.203 [1.176, 1.231] <.0001 

Region_3 -0.1166 0.89 [0.868, 0.912] <.0001 

Region_4 0.1278 1.136 [1.108, 1.165] <.0001 

Region_5 0.3346 1.397 [1.277, 1.53] <.0001 

HospitalAdm 0.1159 1.123 [1.061, 1.188] <.0001 

CharlsScore 0.00338 1.003 [0.985, 1.023] 0.7268 

FrailCat_1 0.5944 1.812 [1.777, 1.847] <.0001 

FrailCat_2 0.9877 2.685 [2.595, 2.778] <.0001 

PulmHeart 0.1131 1.12 [1.054, 1.19] 0.0003 

ConductHeart 0.1853 1.204 [1.136, 1.275] <.0001 

CHF 0.00184 1.002 [0.969, 1.036] 0.9143 

COPD 0.1909 1.21 [1.179, 1.242] <.0001 

Asthma 0.1631 1.177 [1.13, 1.226] <.0001 

Divert 0.1009 1.106 [1.05, 1.165] 0.0001 

CRF 0.2337 1.263 [1.223, 1.305] <.0001 

RA 0.1367 1.146 [1.086, 1.21] <.0001 

SLE 0.1002 1.105 [0.996, 1.227] 0.0592 

ConductHeartB 0.0587 1.06 [1, 1.125] 0.0516 

Diab 0.1544 1.167 [1.142, 1.193] <.0001 

DiabComp 0.2438 1.276 [1.241, 1.312] <.0001 

HIV 0.2558 1.291 [0.883, 1.889] 0.1877 

Hep 0.4527 1.572 [1.382, 1.789] <.0001 

CF 0.8914 2.438 [1.175, 5.06] 0.0167 

Sicle -0.0733 0.929 [0.377, 2.289] 0.8733 

Senile 0.2706 1.311 [1.268, 1.355] <.0001 

Scizo -0.0366 0.964 [0.812, 1.145] 0.6765 

Parkin 0.4776 1.612 [1.532, 1.697] <.0001 

    (continued) 
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Variable  β 

Odds Ratio 

(=eβ) OR 95% C.I. p-value 

MS 0.6971 2.008 [1.766, 2.283] <.0001 

Epil 0.533 1.704 [1.604, 1.81] <.0001 

Otitis 0.1354 1.145 [1.064, 1.233] 0.0003 

Vertigo 0.3814 1.464 [1.409, 1.522] <.0001 

Valve 0.0374 1.038 [1.003, 1.074] 0.0317 

Carditis -0.0437 0.957 [0.905, 1.012] 0.1249 

Hyp 0.2648 1.303 [1.28, 1.326] <.0001 

*c-statistic: 0.725 

4.2 Delirium and Confusion 

The last patient group this study considered were those with confusion and delirium 

admissions. In our entire patient sample (n = 2,595,254), the analysis found differences between 

the delirium patients (n = 68,844) and non-delirium patients (n = 2,526,410) in age (78.34 vs. 

73.87, p < 0.0001) female sex (58.1% vs. 56.8%, p < 0.0001). The patients who experienced a 

confusion or delirium admission, similarly to the Beers exposure grouping discussed at the 

beginning of this chapter, the delirium patients had a significantly higher Charlson score (0.34 

vs. 0.08, p < 0.0001) and frailty score (2.91 vs. 0.33, p < 0.0001) as compared to patients without 

a confusion or delirium admission. The delirium patients in the study experienced a significantly 

longer average length of stay (9.86 vs. 5.86 days, p < 0.0001) and a significantly higher mean 

number of hospital admissions per person (1.44 vs. 1.20, p < 0.0001).  

Also similar to the falls and fracture finding, 49.7% of the patients without a delirium 

admissions were taking at least one Beers Criteria medication. The delirium patients had the 

highest prevalence of any beers medications out of all three groupings with 62.2% of patients 

receiving at least one Beers medication. One of the most noticeable differences when comparing 

any stratification of study patients analyzed in this study, is the difference in the total treatment 

cost. The patients with a delirium admission were found to have a higher unadjusted mean 

treatment cost of $45,380 compared to the non-delirium patients having a mean treatment cost of 
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only $10,868, a difference of $34,512 (p < 0.0001) over the follow-up period of April – 

December 2013. Geographically, the analysis similarly determined the majority of delirium 

patients were located in the North Central region while the majority of non-delirium patients 

were located in the South. 

Table 10 

Descriptive statistics for all patients by delirium admission 

Characteristic 

Patients with no 

delirium admissions 

(n = 2,526,410) 

Patients with delirium 

admissions (n = 

68,844) p-value 

Age, years 73.87 ± 6.8 78.34 ± 6.9 <.0001 

Hospital Admissions/person 1.20 ± 0.57 1.44 ± 0.93 <.0001 

Patients with Any Hospital Admission 294,398 (11.6%) 49,197 (71.5%) <.0001 

Patients taking Any Beers Medications 1,254,510 (49.7%) 43,117 (62.6%) <.0001 

Charlson Score 0.08 ± 0.5 0.34 ± 1.1 <.0001 

Length of Stay, days 5.86 ± 8.5 9.86 ± 14.4 <.0001 

Female 1,468,454 (58.1%) 39,133 (56.8%) <.0001 

Frailty Category   <.0001 

Frailty Cat 0 (Robust) 1,853,562 (73.4%) 26,858 (39.0%)  

Frailty Cat 1 (Pre-frail) 585,931 (23.2%) 26,187 (38.0%)  

Frailty Cat 2 (Frail) 86,917 (3.4%) 15,799 (22.9%)  

Frailty Score 0.33 ± 2.2 2.91 ± 4.3 <.0001 

Insured Days (Member Days) 355 ± 42.3 344 ± 52.3 <.0001 

Geographical Region   <.0001 

Region 1 (Northeast) 569,998 (22.6%) 15,295 (22.2%)  

Region 2 (North Central) 693,772 (27.5%) 22,514 (32.7%)  

Region 3 (South) 730,201 (28.9%) 20,063 (29.1%)  

Region 4 (West) 510,282 (20.2%) 10,464 (15.2%)  

Region 5 (Unknown) 22,157 (0.9%) 508 (0.7%)  

Total Treatment Cost $  10,868 ± 31,546 $  45,380 ± 72,459 <.0001 

Inpatient Cost $    3,154 ± 17,903 $  22,342 ± 54,417 <.0001 

Outpatient Cost $    5,819 ± 22,347 $  20,240 ± 37,459 <.0001 

Pharmacy (Rx) Cost $      1,894 ± 4,754 $      2,798 ± 5,735 <.0001 
*Data expressed as mean ± standard deviation (SD) or otherwise indicated as Number (%), and compared by t-test or by Mann-

Whitney U-test. 

4.2.1 Medication Class Frequency Analysis 

When considering Beers Criteria medication classes that cause disruptions in cognition 

and decreases in cognitive ability, a frequency analysis was again performed for each medication 
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class by delirium and the non-delirium patients. For the purposes of this portion of the analysis, 

the Beers Criteria medication classes selected for analysis were: antihistamines, antipsychotics, 

benzodiazepines, and narcotics. Through this frequency analysis it was determined the most 

commonly used medication class in patients with delirium admissions were benzodiazepines (n = 

13,308), followed by antipsychotics, antihistamines, and lastly narcotics (n = 10,574; 1,237; and 

27 respectively). The non-delirium patients followed the same distribution frequency as the 

delirium patients (n = 351,640; 52,187; 49,907; and 1,514 respectively) A lower overall 

percentage of delirium patients were found to be taking a medication in any other Beers Criteria 

medication class or no Beers medications at all as compared to the non-delirium patients (Other 

Beers: 26.5% vs. 31.8%; No Beers: 37.4% vs. 50.3%, p < 0.0001).  

Table 11 

Incidence of delirium admissions by Beers Medications categories 

Characteristic 

Patients with no 

delirium admissions 

(n=2,526,410) 

Patients with ≥1 

delirium admission 

(n=68,844) p-value 

Beers Criteria Grouping   <.0001 

Antihistamines 45,907 (1.8%) 1,231 (1.8%)  
Antipsychoticsa 52,187 (2.1%) 10,574 (15.4%)  

Benzodiazepinesb 351,640 (13.9%) 13,038 (18.9%)  

Narcotics 1,514 (0.1%) 27 (0.04%)  

Other Medication Classesc 803,262 (31.8%) 18,247 (26.5%)  

No Beers Medications Present 1,271,900 (50.3%) 25,727 (37.4%)  
a Includes first- and second-generation antipsychotics 

b Includes short- and long-acting benzodiazepines 

c Includes any other classification of Beers Criteria medications 

4.2.2 Logistic Regression Results 

Ensuring statistical consistency, the same logistic regression analysis was performed on 

the delirium and non-delirium patients to determine the increase in risk of hospitalization when 

taking one of the specified confusion and delirium Beers medication classes listed in section 

4.2.1. The four medication classes, and the “Other Beers Medication” categorical variable was 
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compared against the “No Beers Medications” baseline category. The analysis determined 

antipsychotics posed the highest risk for a confusion or delirium admission with 5.12 times 

increase in risk (95% CI: 4.985, 4.263), benzodiazepines with 1.8 times increase (95% CI: 1.762, 

1.841), and antihistamines increased risk by 1.42 times (95% CI: 1.335, 1.503). Narcotics only 

marginally increased the risk of hospitalization by 1.05 times (95% CI: 0.714, 1.544) while 

patients taking any other medications present on the Beers Criteria were found to have risk 

increase of 1.22 times (95% CI: 1.197, 1.245).  

Like the falls and fracture regression analysis, one of the patient characteristics outside of 

Beers Criteria medication use found to increase the risk of a confusion or delirium admission 

was again frailty category. Using a robust patient as the baseline (frailcat_0), patients who 

moved into the pre-frail category had 2.1 times (95% CI: 1.974, 2.051) increase in 

hospitalization risk while patients in the frail category had 3.7 times (95% CI: 3.592, 3.809) 

increase in risk in hospitalization. As performed in the falls and fracture regression, the 

Elixhauser Comorbidity and frailty indicators were included as additional controlling variables. 

The regression analysis found patients diagnosed with Sickle Cell Anemia had 2.7 times increase 

(95% CI: 1.564, 4.732) in risk of hospitalization and patients with Multiple Sclerosis or Epilepsy 

both saw 2.4 times increase (95% CI: 2.126, 2.693; 95% CI: 2.33, 2.57) in risk. 
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Table 12 

Logistic regression results for delirium 

Variable  β 

Odds Ratio 

(=eβ) OR 95% C.I. p-value 

Intercept -8.954 
  

<.0001 

DillBeersCat2 - AHist vs No Beers -0.1218 1.416 [1.335, 1.503] 0.003 

DillBeersCat2 - APsyco vs No Beers 1.1638 5.122 [4.985, 5.263] <.0001 

DillBeersCat2 - Benzos vs No Beers 0.1186 1.801 [1.762, 1.841] 0.0005 

DillBeersCat2 - Narcoti vs No Beers -0.4206 1.05 [0.714, 1.544] 0.0103 

DillBeersCat2 - OtherRx vs No Beers -0.2703 1.221 [1.197, 1.245] <.0001 

AGE 0.0646 1.067 [1.065, 1.068] <.0001 

MEMDAYS -0.00038 1 [0.999, 1] <.0001 

Male 0.0685 1.071 [1.054, 1.088] <.0001 

Region_2 0.1771 1.194 [1.168, 1.22] <.0001 

Region_3 0.1179 1.125 [1.1, 1.15] <.0001 

Region_4 -0.226 0.798 [0.777, 0.819] <.0001 

Region_5 0.2264 1.254 [1.143, 1.375] <.0001 

HospitalAdm 0.3492 1.418 [1.357, 1.481] <.0001 

CharlsScore 0.0354 1.036 [1.022, 1.05] <.0001 

FrailCat_1 0.6992 2.012 [1.974, 2.051] <.0001 

FrailCat_2 1.3081 3.699 [3.592, 3.809] <.0001 

PulmHeart 0.0524 1.054 [0.996, 1.115] 0.068 

ConductHeart 0.1353 1.145 [1.086, 1.207] <.0001 

CHF 0.0648 1.067 [1.037, 1.098] <.0001 

COPD 0.1806 1.198 [1.17, 1.227] <.0001 

Asthma -0.0608 0.941 [0.902, 0.982] 0.0053 

Divert -0.0163 0.984 [0.934, 1.037] 0.5421 

CRF 0.3868 1.472 [1.431, 1.514] <.0001 

RA 0.024 1.024 [0.969, 1.082] 0.3947 

SLE -0.0481 0.953 [0.852, 1.067] 0.402 

ConductHeartB 0.0241 1.024 [0.97, 1.082] 0.384 

Diab 0.2471 1.28 [1.255, 1.307] <.0001 

DiabComp 0.3605 1.434 [1.399, 1.47] <.0001 

HIV 0.2242 1.251 [0.887, 1.765] 0.2011 

Hep 0.5379 1.712 [1.524, 1.925] <.0001 

CF -0.6296 0.533 [0.161, 1.759] 0.3015 

Sicle 1.0008 2.721 [1.564, 4.732] 0.0004 

Senile 0.547 1.728 [1.682, 1.775] <.0001 

Scizo 0.1281 1.137 [1.006, 1.284] 0.0396 

Parkin 0.3221 1.38 [1.319, 1.444] <.0001 

MS 0.8725 2.393 [2.126, 2.693] <.0001 

    (continued) 
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Variable  β 

Odds Ratio 

(=eβ) OR 95% C.I. p-value 

Epil 0.8949 2.447 [2.33, 2.57] <.0001 

Otitis -0.0397 0.961 [0.889, 1.04] 0.3221 

Vertigo 0.3154 1.371 [1.319, 1.424] <.0001 

Valve -0.00934 0.991 [0.959, 1.023] 0.574 

Carditis -0.0461 0.955 [0.909, 1.003] 0.0659 

Hyp 0.1125 1.119 [1.1, 1.138] <.0001 

* c-statistic = 0.80 

4.3 Gamma Log-Linked Regression for Study Cost 

The final component of this study was the effect of the different Beers Criteria 

medication classes on the overall study or treatment cost. Using a gamma log-linked regression, 

we found that all 7 medication classes, including the “OtherRx” category, all significantly 

increased the total study or treatment costs from the non-Beers exposed control group over a 

follow-up period of April – December 2013. As shown in Table 13, the largest effect on study 

cost was patients using antipsychotics at $17,692 (95% CI: 17,500, 17,886) followed by narcotic 

use at $16,393 (95% CI: 15,201, 17,679). It is worth noting the results for the barbiturates and 

tricyclic antidepressant categories are specific for the falls and fracture admissions while the 

narcotic category is specific for the confusion and delirium admissions. 

Table 13 

Gamma log-link regression results for overall study cost 

Variable Label β Est. β 95% C.I. 

Exponentiated 

(=eβ) eβ 95% C.I. 

p-

value 

AHist Antihistamines 9.4961 [9.4828, 9.5094] $13,308 [13132, 13487] <.0001 

APsyco Antipsychotics 9.7809 [9.7699, 9.7918] $17,692 [17500, 17886] <.0001 

Barbit Barbiturates 9.467 [9.4402, 9.4937] $12,926 [12584, 13276] <.0001 

Benzos Benzodiazepines 9.6666 [9.6621, 9.6711] $15,782 [15712, 15853] <.0001 

Narcoti Narcotics 9.7046 [9.6291, 9.7801] $16,393 [15201, 17679] <.0001 

Sedativ Sedatives 9.5438 [9.535, 9.5525] $13,957 [13836, 14080] <.0001 

TCA Tricyclic 

Antidepressants 9.4485 [9.4341, 9.463] $12,690 [12508, 12874] 

<.0001 

OtherRx Other Beers Rx 9.3696 [9.3663, 9.3728] $11,726 [11688, 11765] <.0001 

zNo_Bee No Beers Rx 8.8971 [8.8947, 8.8995] $  7,311 [7293, 7328] <.0001 
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Figure 5: Least Squares Means for all Beers Criteria medication classes, overall study cost 

 

When the same gamma log-linked regression model was run specifically on the pharmacy 

Rx cost variable similar to the overall study cost model, we found that antipsychotic use was the 

largest contributing factor to the change in direct pharmacy costs by $3,858 (95% CI = 3,806, 

3,911). Following antipsychotics, benzodiazepines, barbiturates, narcotics, and tricyclic 

antidepressants all very similarly contributed to the overall change in pharmacy costs. 

Table 14 

Gamma log-link regression results for pharmacy Rx cost 

Variable Label β Est. β 95% C.I. 

Exponentiated 

(=eβ)  eβ 95% C.I. p- value 

AHist Antihistamines 7.8643 [7.8478, 7.8807] $2,602 [2560, 2655] <.0001 

APsyco Antipsychotics 8.2579 [8.2443, 8.2715] $3,858 [3806, 3911] <.0001 

Barbit Barbiturates 7.9361 [7.9031, 7.9691] $2,796 [2706, 298] <.0001 

Benzos Benzodiazepines 7.9377 [7.9322, 7.9432] $2,801 [2785, 2816] <.0001 

Narcoti Narcotics 7.9294 [7.8364, 8.0224] $2,778 [2531, 3048] <.0001 

Sedativ Sedatives 7.9225 [7.9117, 7.9333] $2,759 [2729, 2789] <.0001 

TCA 

Tricyclic 

Antidepressants 7.9306 [7.9128, 7.9483] $2,781 [2732, 2831] <.0001 

OtherRx Other Beers Rx 7.6901 [7.6860, 7.6941] $2,186 [2178, 2195] <.0001 

zNo_Bee No Beers Rx 6.8869 [6.8840, 6.8899] $   979 [977, 982] <.0001 



62 

 

Figure 6: Least Squares Means for all Beers Criteria medication classes, Rx payment costs 

 

The gamma log-linked regression results when considering the effect of the Beers 

Criteria medication classes on the outpatient costs yielded a different result than the previous two 

models. In this model, the highest contributing factor to outpatient costs was the presence of 

narcotics with an average annual outpatient cost of $9,068 (95% CI: 8,631, 9,835). Following 

narcotic use, the second largest contributor to outpatient costs were benzodiazepines, followed 

by antipsychotics, tricyclic antidepressants, antihistamines, barbiturates, and lastly, sedatives. 
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Table 15 

Gamma log-link regression results for outpatient costs 

Variable Label β Est. β 95% C.I. 

Exponentiated 

(=eβ) eβ 95% C.I. p- value 

AHist Antihistamines 8.7968 [8.7825, 8.8111] $6,613 [6519, 6708] <.0001 

APsyco Antipsychotics 8.9174 [8.9056, 8.9292] $7,461 [7373, 7549] <.0001 

Barbit Barbiturates 8.7369 [8.7081, 8.7657] $6,228 [6052, 6410] <.0001 

Benzos Benzodiazepines 8.9877 [8.9829, 8.9925] $8,004 [7966, 8043] <.0001 

Narcoti Narcotics 9.1125 [9.0313, 9.1937] $9,068 [8631, 9835] <.0001 

Sedativ Sedatives 8.8327 [8.7052, 8.7362] $6,855 [6034, 6224] <.0001 

TCA 

Tricyclic 

Antidepressants 8.7207 [8.6518, 8.6588] $6,129 [5721, 5761] <.0001 

OtherRx Other Beers Rx 8.6553 [8.8233, 8.8422] $5,741 [6791, 6920] <.0001 

zNo_Bee No Beers Rx 8.3194 [8.3168, 8.3219] $4,102 [4092, 4113] <.0001 

 

Figure 7: Least Squares Means for all Beers Criteria medication classes, outpatient costs 

 

The last gamma log-linked regression analysis performed examined the effect of the 

Beers Criteria categories on the inpatient costs. In this model, the antipsychotic medication class 

had the largest inpatient costs at $6,240 (95% CI: 6098, 6385). The inpatient model followed the 

generalized model and the pharmacy Rx costs model with benzodiazepines having the second 
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largest effect. Narcotics, sedatives, antihistamines, barbiturates, and tricyclic antidepressants 

followed benzodiazepines in order from next largest effect to smallest. 

Table 16 

Gamma log-linked regression results for inpatient costs 

Variable Label β Est. β 95% C.I. 

Exponentiated 

(=eβ) eβ 95% C.I. p- value 

AHist Antihistamines 8.2552 [8.2271, 8.2834] $3,848 [3741, 3958] <.0001 

APsyco Antipsychotics 8.7388 [8.7158, 8.7618] $6,240 [6098, 6385] <.0001 

Barbit Barbiturates 8.2155 [8.1589, 8.2721] $3,698 [3494, 3913] <.0001 

Benzos Benzodiazepines 8.4820 [8.4725, 8.4914] $4,827 [4781, 4873] <.0001 

Narcoti Narcotics 8.4298 [8.2701, 8.5894] $4,581 [3905, 5375] <.0001 

Sedativ Sedatives 8.3208 [8.3022, 8.3393] $4,108 [4033, 4185] <.0001 

TCA 

Tricyclic 

Antidepressants 8.1615 [8.1310, 8.1920] $3,503 [3398, 3612] <.0001 

OtherRx Other Beers Rx 8.1884 [8.1815, 8.1953] $3,599 [3574, 3624] <.0001 

zNo_Bee No Beers Rx 7.6219 [7.6169, 7.6269] $2,042 [2032, 2053] <.0001 

 

Figure 8: Least Squares Means results for all Beers Criteria medication classes, inpatient 

costs 
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5) CHAPTER V DISCUSSION 

Overall, patients in both experimental groups were older, had a longer length of stay, and 

a higher Charlson Score than their well-matched control groups. Antipsychotics and 

benzodiazepines were consistently the most frequent prescribed class of Beers Criteria 

medications to both groups of patients who experienced a fall or fracture, or delirium or 

confusion admission. Antipsychotics and benzodiazepines were also associated with the greatest 

increase in risk of admission both the falls and fractures, and the delirium and confusion groups. 

Antipsychotics were associated with the highest overall expected cost of admission and 

benzodiazepines third, when considering admission type independently. Narcotics, specifically 

considered for the delirium patients, was the second highest contributor to the expected cost of 

admission. Figure 9 shows all Beers Criteria medication classes analyzed in this study for the 

overall treatment costs for all patients. The baseline total treatment costs for the control groups in 

the absence of Beers Criteria medications (NoBeers) was $7,311 and is indicated by the red line 

in the figure. The increase in total treatment cost is shown in the bar above the red baseline 

relative to the magnitude of the increase by the Beers Criteria medication class.  

Figure 9: Effect of Beers Criteria medication class on overall treatment cost 
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When specifically considering the patients who experiences a fall or fracture admission, 

we found benzodiazepines and antipsychotics as the most frequent Beers Criteria classes 

involved with these types of admissions. We also saw an increased risk of a falls and fracture 

admission of 1.9 times with antipsychotics, and 1.4 times with benzodiazepines. 

Patients with delirium or confusion admissions we again saw benzodiazepines and 

antipsychotics as the most frequently involved Beers Criteria classes. We saw an increased risk 

of a confusion and delirium admission of 5.1 times with antipsychotic use, 1.8 times with the use 

of benzodiazepines, and 1.4 times with the use of antihistamines. 

These findings show validation of the logical linkage between the use of certain Beers 

Criteria medications and their expected hospital admissions.  

5.1 Limitations 

As with any study there are limitations we encountered, some could be managed while 

others could not due to the design of our study. First, as identified by the O’Neill Roldan (2018) 

study during the creation of the study design and dataset, the inclusion of only community-

dwelling individuals ≥65 years old would exclude those who are institutionalized in nursing 

homes, long-term assisted living, or short-term rehabilitation facilities. This exclusion of a large 

segment of the elderly population could skew the actual cost burden placed on the patient, payer, 

and healthcare system as the costs data excluded costs relating to skilled nursing, long-term, 

palliative, or hospice care. 

Second, the use of Truven Marketscan® Administrative Claims data contains its own 

logical limitations. The Marketscan® database is a convenience, not a randomized, sample. 

Because of this, there are analytical cases where the extracted data may contain unintended 

biases which can diminish generalizability to larger populations. This was taken into 
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consideration in the initial construction of the data source by O’Neill Roldan (2018) and this 

effect and limitation is minimized by our population sample size. Additionally, given the 

frequencies calculated for Beers Criteria medication use and general population characteristics, 

we in this study found that these proportions are in alignment with already existing literature and 

are confident generalizations from our data are accurate. 

Marketscan® data is aggregated from data sources which are intended for billing and not 

specifically research. Therefore, the accuracy in coding of billing data within the dataset, while 

unlikely, could be incorrect causing the unintended exclusion of patients from the original 

dataset. While the various Marketscan® databases are touted for their high-quality and 

comprehensive coding, the potential for this error could equally affect both groups, so the effect 

from this limitation is minimized. Lastly, Marketscan® data only captures encounters data for 

which a claim was actually captured. This unintended bias, similar to coding errors, may cause 

certain comorbidities, procedures, or medications to not be included in the data set and patients 

could be unintentionally excluded.  

5.2 Future Research 

Due to time constraints, there areas of research planned in this study that could not be 

completed. First, future researchers should consider examining different popular combinations of 

drug classes and their effects on falls, fractures, delirium, and confusion on community-dwelling 

individuals. Second, the examination and investigation of the impact of specific medications 

versus an entire class on these types of admissions. Lastly, examining risks of falls, fractures, 

confusion, and delirium outside of community-dwelling individuals as this study did, for 

example, short-term rehab facilities, long-term care, and skilled nursing facilities. This 

suggestion for future research was also considered in O’Neill Roldan (2018). 
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5.3 Conclusions 

Our study found that patients using antipsychotics are at twice the risk for a fall or 

fracture hospitalization than their well-matched controls. Second, our study found patients using 

antipsychotics are at more than a five times risk for a delirium or delirium-related hospitalization 

than their well-matched controls. We saw with all patients that antipsychotics use was associated 

with a $10,381 dollar increase in cost and benzodiazepines use was associated with an $8,471 

dollar increase over their well-matched non-Beers baselines. We also found specifically with the 

delirium patients, narcotic use was associated with a $9,082 dollar increase in treatment costs 

over their well-matched non-Beers baseline. 

Through our study we found and can confirm that additional hospital admissions are 

logically linked to the expected side effects of certain classes of Beers Criteria medications in 

regards to falls and fracture admissions for medications effecting balance and gait; and delirium 

and confusion admissions for those medications effecting cognition in the elderly. Future 

research and investigation into specific medication-level research and medication class 

combinations with regards to falls and fractures, and confusion and delirium in the elderly is 

warranted. 
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Appendix A: 2012 Beers List Medications 
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Source: American Geriatrics Society 2012 Beers Criteria Update Expert Panel (2012). American 

Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older 

adults. Journal of the American Geriatrics Society, 60(4), 616–631. 

https://doi.org/10.1111/j.1532-5415.2012.03923.x 
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Appendix B: 2012 Beers Criteria Medications Added and Removed 
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Source: American Geriatrics Society 2012 Beers Criteria Update Expert Panel (2012). American 

Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older 

adults. Journal of the American Geriatrics Society, 60(4), 616–631. 

https://doi.org/10.1111/j.1532-5415.2012.03923.x 
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Appendix C: 2015 Beers Criteria Medications Added and Removed 

 

 

Source: By the American Geriatrics Society 2015 Beers Criteria Update Expert Panel (2015). 

American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate 

Medication Use in Older Adults. Journal of the American Geriatrics Society, 63(11), 2227–2246. 

https://doi.org/10.1111/jgs.13702   
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Appendix D: 2019 Beers Criteria Medications 
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Source: American Geriatrics Society Beers Criteria® Update Expert Panel. (2019). American 

Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication 

Use in Older Adults. Journal of the American Geriatrics Society, 67(4), 674-694. 

https://doi.org/10.1111/jgs.15767   

https://doi.org/10.1111/jgs.15767
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Appendix E: 2019 Beers Criteria Medications Added and Removed 
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Source: American Geriatrics Society Beers Criteria® Update Expert Panel. (2019). American 

Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication 

Use in Older Adults. Journal of the American Geriatrics Society, 67(4), 674-694. 

https://doi.org/10.1111/jgs.15767   

https://doi.org/10.1111/jgs.15767
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Table 17 

List of dataset variables for Saber (2020) 

Col# Variable Label 

144 ADMS # of Hospital Admissions 

147 adms_0 # of Hospital Admissions 

3 AGE Age of Patient 

39 Alpha_Agonist_Central_Dys Beers Criteria Medication Class, Rx Days 

159 Alpha_Agonist_Central_IND Beers Criteria Medication Class, Binary Indicator 

38 Alpha_Agonist_Central_Rx Beers Criteria Medication Class, # Rx 

41 Alpha_Blocker_Dys Beers Criteria Medication Class, Rx Days 

160 Alpha_Blocker_IND Beers Criteria Medication Class, Binary Indicator 

40 Alpha_Blocker_Rx Beers Criteria Medication Class, # Rx 

120 Ambu Frailty Measure Indicator 

43 Antiarrhythmic_Dys Beers Criteria Medication Class, Rx Days 

161 Antiarrhythmic_IND Beers Criteria Medication Class, Binary Indicator 

42 Antiarrhythmic_Rx Beers Criteria Medication Class, # Rx 

45 Antiemetics_Dys Beers Criteria Medication Class, Rx Days 

162 Antiemetics_IND Beers Criteria Medication Class, Binary Indicator 

44 Antiemetics_Rx Beers Criteria Medication Class, # Rx 

47 Antihistamine_1st_Gen_Dys Beers Criteria Medication Class, Rx Days 

163 Antihistamine_1st_Gen_IND Beers Criteria Medication Class, Binary Indicator 

46 Antihistamine_1st_Gen_Rx Beers Criteria Medication Class, # Rx 

49 Antihypertensive_Dys Beers Criteria Medication Class, Rx Days 

164 Antihypertensive_IND Beers Criteria Medication Class, Binary Indicator 

48 Antihypertensive_Rx Beers Criteria Medication Class, # Rx 

51 Antiinfective_Dys Beers Criteria Medication Class, Rx Days 

165 Antiinfective_IND Beers Criteria Medication Class, Binary Indicator 

50 Antiinfective_Rx Beers Criteria Medication Class, # Rx 

53 Antiparkinson_agent_Dys Beers Criteria Medication Class, Rx Days 

166 Antiparkinson_agent_IND Beers Criteria Medication Class, Binary Indicator 

52 Antiparkinson_agent_Rx Beers Criteria Medication Class, # Rx 

55 Antipsychotics_FirstGen_Dys Beers Criteria Medication Class, Rx Days 

167 Antipsychotics_FirstGen_IND Beers Criteria Medication Class, Binary Indicator 

54 Antipsychotics_FirstGen_Rx Beers Criteria Medication Class, # Rx 

57 Antipsychotics_SecondGen_Dys Beers Criteria Medication Class, Rx Days 

168 Antipsychotics_SecondGen_IND Beers Criteria Medication Class, Binary Indicator 

56 Antipsychotics_SecondGen_Rx Beers Criteria Medication Class, # Rx 

59 Antispasmodic_Dys Beers Criteria Medication Class, Rx Days 

169 Antispasmodic_IND Beers Criteria Medication Class, Binary Indicator 

58 Antispasmodic_Rx Beers Criteria Medication Class, # Rx 

  (continued) 
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Col# Variable Label 

61 Antithrombotic_Dys Beers Criteria Medication Class, Rx Days 

170 Antithrombotic_IND Beers Criteria Medication Class, Binary Indicator 

60 Antithrombotic_Rx Beers Criteria Medication Class, # Rx 

63 Anxiolytic_Dys Beers Criteria Medication Class, Rx Days 

171 Anxiolytic_IND Beers Criteria Medication Class, Binary Indicator 

62 Anxiolytic_Rx Beers Criteria Medication Class, # Rx 

148 AnyADM Any Hospital Admission, Binary Indicator 

100 AnyBeers Any Beers Medication Present, Binary Indicator 

113 arthritis Frailty Measure Indicator 

14 Asthma Elixhauser Comorbidity Indicator 

65 Barbiturates_Dys Beers Criteria Medication Class, Rx Days 

172 Barbiturates_IND Beers Criteria Medication Class, Binary Indicator 

64 Barbiturates_Rx Beers Criteria Medication Class, # Rx 

158 BeersCat Beers Criteria Medication Class, Categorical, Study-based 

67 Benzodiazepines_Long_Acting_Dys Beers Criteria Medication Class, Rx Days 

173 Benzodiazepines_Long_Acting_IND Beers Criteria Medication Class, Binary Indicator 

66 Benzodiazepines_Long_Acting_Rx Beers Criteria Medication Class, # Rx 

69 Benzodiazepines_Short_Acting_Dys Beers Criteria Medication Class, Rx Days 

174 Benzodiazepines_Short_Acting_IND Beers Criteria Medication Class, Binary Indicator 

68 Benzodiazepines_Short_Acting_Rx Beers Criteria Medication Class, # Rx 

101 bladder Charlson Comorbidity Score Indicator 

116 braininj Charlson Comorbidity Score Indicator 

105 cancer Charlson Comorbidity Score Indicator 

32 Carditis Elixhauser Comorbidity Indicator 

22 CF Elixhauser Comorbidity Indicator 

8 CharlsScore Charlson Score 

12 CHF Elixhauser Comorbidity Indicator 

102 coagulopathy Charlson Comorbidity Score Indicator 

10 ConductHeart Elixhauser Comorbidity Indicator 

11 ConductHeartB Elixhauser Comorbidity Indicator 

13 COPD Elixhauser Comorbidity Indicator 

16 CRF Elixhauser Comorbidity Indicator 

143 Days Length of Stay, # of Days 

146 days_0 Length of Stay, # of Days 

104 dementia Charlson Comorbidity Score Indicator 

18 Diab Elixhauser Comorbidity Indicator 

19 DiabComp Elixhauser Comorbidity Indicator 

118 diabetes Charlson Comorbidity Score Indicator 

109 diffwalk Frailty Measure Indicator 

155 Dill Delirium Admission, Binary Indicator 

  (continued) 



110 

 

Col# Variable Label 

193 DillBeersCat Delirium Beers Medication Class, Categorical 

194 DillBeersCat2 Delirium Beers Medication Class, Categorical 

156 DillNum # of Hospital Admissions, Delirium Specific 

71 Diuretic_Dys Beers Criteria Medication Class, Rx Days 

175 Diuretic_IND Beers Criteria Medication Class, Binary Indicator 

70 Diuretic_Rx Beers Criteria Medication Class, # Rx 

15 Divert Elixhauser Comorbidity Indicator 

5 EGEOLOC Geographic Location Employee 

1 ENROLID Enrollee ID 

28 Epil Elixhauser Comorbidity Indicator 

73 Ergoloid_Dys Beers Criteria Medication Class, Rx Days 

176 Ergoloid_IND Beers Criteria Medication Class, Binary Indicator 

72 Ergoloid_Rx Beers Criteria Medication Class, # Rx 

153 FallDrug Fall Beers Medication Class, Binary Indicator 

151 FallDrugDays # of Rx Days for Combined Fall Drug Medication Classes 

152 FallDrugMos # of Rx Mos for Combined Fall Drug Medication Classes 

150 FallNum # of Hospital Admissions, Falls Specific 

149 Falls Falls Admission, Binary Indicator 

192 FallsBeersCat Fall Beers Medication Class, Categorical 

195 FallsDillBeersCats Fall and Delirium Beers Medication Classes, Categorical 

126 Female Gender, Female 

123 FrailCat Frailty Category, Categorical 

134 FrailCat_0 Frailty Indicator, Pre-Frail, Binary Indicator 

132 FrailCat_1 Frailty Indicator, Frail, Binary Indicator 

133 FrailCat_2 Frailty Indicator, Robust, Binary Indicator 

122 FrailScore Calculated Frailty Score 

75 Gut_motility_stimulator_Dys Beers Criteria Medication Class, Rx Days 

177 Gut_motility_stimulator_IND Beers Criteria Medication Class, Binary Indicator 

74 Gut_motility_stimulator_Rx Beers Criteria Medication Class, # Rx 

106 heartfail Charlson Comorbidity Score Indicator 

21 Hep Elixhauser Comorbidity Indicator 

119 HHBed Frailty Measure Indicator 

20 HIV Elixhauser Comorbidity Indicator 

121 HomeO2 Frailty Measure Indicator 

77 Hormones_Dys Beers Criteria Medication Class, Rx Days 

178 Hormones_IND Beers Criteria Medication Class, Binary Indicator 

76 Hormones_Rx Beers Criteria Medication Class, # Rx 

124 HospitalAdm Hospital Admissions, Binary Indicator 

33 Hyp Elixhauser Comorbidity Indicator 

35 LateStroke Elixhauser Comorbidity Indicator 
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Col# Variable Label 

97 Laxative_Dys Beers Criteria Medication Class, Rx Days 

179 Laxative_IND Beers Criteria Medication Class, Binary Indicator 

96 Laxative_Rx Beers Criteria Medication Class, # Rx 

107 lipid Charlson Comorbidity Score Indicator 

125 Male Gender, Male 

2 MEMDAYS Member Days 

27 MS Elixhauser Comorbidity Indicator 

6 MSA Metropolitan Statistical Area 

157 Narcotic Narcotic, Binary Indicator 

81 Narcotic_Dys Beers Criteria Medication Class, Rx Days 

180 Narcotic_IND Beers Criteria Medication Class, Binary Indicator 

80 Narcotic_Rx Beers Criteria Medication Class, # Rx 

191 NoBeersRx_IND No Beers Medications Taken, Binary Indicator 

85 Nonbarbiturate_sedative_hypn_Dys Beers Criteria Medication Class, Rx Days 

181 Nonbarbiturate_sedative_hypn_IND Beers Criteria Medication Class, Binary Indicator 

84 Nonbarbiturate_sedative_hypn_Rx Beers Criteria Medication Class, # Rx 

87 Nonbenzodiazepine_sedative_Dys Beers Criteria Medication Class, Rx Days 

182 Nonbenzodiazepine_sedative_IND Beers Criteria Medication Class, Binary Indicator 

86 Nonbenzodiazepine_sedative_Rx Beers Criteria Medication Class, # Rx 

83 NonCOX_NSAIDs_Dys Beers Criteria Medication Class, Rx Days 

183 NonCOX_NSAIDs_IND Beers Criteria Medication Class, Binary Indicator 

82 NonCOX_NSAIDs_Rx Beers Criteria Medication Class, # Rx 

79 NSAIDs_Dys Beers Criteria Medication Class, Rx Days 

184 NSAIDs_IND Beers Criteria Medication Class, Binary Indicator 

78 NSAIDs_Rx Beers Criteria Medication Class, # Rx 

154 OtherBeers Other Beers Medication Class, Categorical, Study Specific 

190 OtherRx_IND Other Beers Medication Class, Binary Indicator, Study 

Specific 

29 Otitis Elixhauser Comorbidity Indicator 

37 Paral Elixhauser Comorbidity Indicator 

103 paraplegic Charlson Comorbidity Score Indicator 

26 Parkin Elixhauser Comorbidity Indicator 

110 pd Charlson Comorbidity Score Indicator 

99 Phenothiazines_Dys Beers Criteria Medication Class, Rx Days 

185 Phenothiazines_IND Beers Criteria Medication Class, Binary Indicator 

98 Phenothiazines_Rx Beers Criteria Medication Class, # Rx 

111 podiatry Frailty Measure Indicator 

136 pscore Estimated Probability 

108 psychiatric Charlson Comorbidity Score Indicator 

9 PulmHeart Elixhauser Comorbidity Indicator 

17 RA Elixhauser Comorbidity Indicator 
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Col# Variable Label 

7 REGION Region, Categorical 

127 Region_1 Region, Northeast, Binary Indicator 

128 Region_2 Region, North Central, Binary Indicator 

129 Region_3 Region, South, Binary Indicator 

130 Region_4 Region, West, Binary Indicator 

131 Region_5 Region, Unknown, Binary Indicator 

112 rehab Frailty Measure Indicator 

25 Scizo Elixhauser Comorbidity Indicator 

24 Senile Elixhauser Comorbidity Indicator 

115 sepsis Charlson Comorbidity Score Indicator 

4 SEX Gender of Patient 

23 Sicle Elixhauser Comorbidity Indicator 

89 Skeletal_muscle_relaxants_Dys Beers Criteria Medication Class, Rx Days 

186 Skeletal_muscle_relaxants_IND Beers Criteria Medication Class, Binary Indicator 

88 Skeletal_muscle_relaxants_Rx Beers Criteria Medication Class, # Rx 

114 skinulcer Charlson Comorbidity Score Indicator 

34 SLE Elixhauser Comorbidity Indicator 

145 Studycost Total Cost, Inpatient+Outpatient+Rx 

36 SUlcer Elixhauser Comorbidity Indicator 

91 Sulfonylureas_Dys Beers Criteria Medication Class, Rx Days 

187 Sulfonylureas_IND Beers Criteria Medication Class, Binary Indicator 

90 Sulfonylureas_Rx Beers Criteria Medication Class, # Rx 

142 SumIP13 Total Cost, Inpatient 

141 SumOP13 Total Cost, Outpatient 

140 SumRx13 Total Cost, Rx 

93 Tertiary_TCAs_Dys Beers Criteria Medication Class, Rx Days 

188 Tertiary_TCAs_IND Beers Criteria Medication Class, Binary Indicator 

92 Tertiary_TCAs_Rx Beers Criteria Medication Class, # Rx 

31 Valve Elixhauser Comorbidity Indicator 

95 Vasodilator_Dys Beers Criteria Medication Class, Rx Days 

189 Vasodilator_IND Beers Criteria Medication Class, Binary Indicator 

94 Vasodilator_Rx Beers Criteria Medication Class, # Rx 

30 Vertigo Elixhauser Comorbidity Indicator 

117 weakness Frailty Measure Indicator 

135 _LEVEL_ Response Value 

137 _Lps Logit of Propensity Score 

139 _MatchID Matched ID number 

138 _MATCHWGT_ Matched obs ATT weight 
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Table 18 

List of dataset variables from O'Neill Roldan (2018) 

Col# Variable Label 

144 ADMS # of Hospital Admissions 

147 adms_0 # of Hospital Admissions 

3 AGE Age of Patient 

39 Alpha_Agonist_Central_Dys Beers Criteria Medication Class, Rx Days 

38 Alpha_Agonist_Central_Rx Beers Criteria Medication Class, # Rx 

41 Alpha_Blocker_Dys Beers Criteria Medication Class, Rx Days 

40 Alpha_Blocker_Rx Beers Criteria Medication Class, # Rx 

120 Ambu Frailty Measure Indicator 

43 Antiarrhythmic_Dys Beers Criteria Medication Class, Rx Days 

42 Antiarrhythmic_Rx Beers Criteria Medication Class, # Rx 

45 Antiemetics_Dys Beers Criteria Medication Class, Rx Days 

44 Antiemetics_Rx Beers Criteria Medication Class, # Rx 

47 Antihistamine_1st_Gen_Dys Beers Criteria Medication Class, Rx Days 

46 Antihistamine_1st_Gen_Rx Beers Criteria Medication Class, # Rx 

49 Antihypertensive_Dys Beers Criteria Medication Class, Rx Days 

48 Antihypertensive_Rx Beers Criteria Medication Class, # Rx 

51 Antiinfective_Dys Beers Criteria Medication Class, Rx Days 

50 Antiinfective_Rx Beers Criteria Medication Class, # Rx 

53 Antiparkinson_agent_Dys Beers Criteria Medication Class, Rx Days 

52 Antiparkinson_agent_Rx Beers Criteria Medication Class, # Rx 

55 Antipsychotics_FirstGen_Dys Beers Criteria Medication Class, Rx Days 

54 Antipsychotics_FirstGen_Rx Beers Criteria Medication Class, # Rx 

57 Antipsychotics_SecondGen_Dys Beers Criteria Medication Class, Rx Days 

56 Antipsychotics_SecondGen_Rx Beers Criteria Medication Class, # Rx 

59 Antispasmodic_Dys Beers Criteria Medication Class, Rx Days 

58 Antispasmodic_Rx Beers Criteria Medication Class, # Rx 

61 Antithrombotic_Dys Beers Criteria Medication Class, Rx Days 

60 Antithrombotic_Rx Beers Criteria Medication Class, # Rx 

63 Anxiolytic_Dys Beers Criteria Medication Class, Rx Days 

62 Anxiolytic_Rx Beers Criteria Medication Class, # Rx 

148 AnyADM Any Hospital Admission, Binary Indicator 

100 AnyBeers Any Beers Medication Present, Binary Indicator 

113 arthritis Frailty Measure Indicator 

14 Asthma Elixhauser Comorbidity Indicator 

65 Barbiturates_Dys Beers Criteria Medication Class, Rx Days 

64 Barbiturates_Rx Beers Criteria Medication Class, # Rx 

158 BeersCat Beers Criteria Medication Class, Categorical, Study-based 

67 Benzodiazepines_Long_Acting_Dys Beers Criteria Medication Class, Rx Days 

  (continued) 



114 

 

Col# Variable Label 

66 Benzodiazepines_Long_Acting_Rx Beers Criteria Medication Class, # Rx 

69 Benzodiazepines_Short_Acting_Dys Beers Criteria Medication Class, Rx Days 

68 Benzodiazepines_Short_Acting_Rx Beers Criteria Medication Class, # Rx 

101 bladder Charlson Comorbidity Score Indicator 

116 braininj Charlson Comorbidity Score Indicator 

105 cancer Charlson Comorbidity Score Indicator 

32 Carditis Elixhauser Comorbidity Indicator 

22 CF Elixhauser Comorbidity Indicator 

8 CharlsScore Charlson Score 

12 CHF Elixhauser Comorbidity Indicator 

102 coagulopathy Charlson Comorbidity Score Indicator 

10 ConductHeart Elixhauser Comorbidity Indicator 

11 ConductHeartB Elixhauser Comorbidity Indicator 

13 COPD Elixhauser Comorbidity Indicator 

16 CRF Elixhauser Comorbidity Indicator 

143 Days Length of Stay, # of Days 

146 days_0 Length of Stay, # of Days 

104 dementia Charlson Comorbidity Score Indicator 

18 Diab Elixhauser Comorbidity Indicator 

19 DiabComp Elixhauser Comorbidity Indicator 

118 diabetes Charlson Comorbidity Score Indicator 

109 diffwalk Frailty Measure Indicator 

71 Diuretic_Dys Beers Criteria Medication Class, Rx Days 

70 Diuretic_Rx Beers Criteria Medication Class, # Rx 

15 Divert Elixhauser Comorbidity Indicator 

5 EGEOLOC Geographic Location Employee 

1 ENROLID Enrollee ID 

28 Epil Elixhauser Comorbidity Indicator 

73 Ergoloid_Dys Beers Criteria Medication Class, Rx Days 

72 Ergoloid_Rx Beers Criteria Medication Class, # Rx 

126 Female Gender, Female 

123 FrailCat Frailty Category, Categorical 

134 FrailCat_0 Frailty Indicator, Pre-Frail, Binary Indicator 

132 FrailCat_1 Frailty Indicator, Frail, Binary Indicator 

133 FrailCat_2 Frailty Indicator, Robust, Binary Indicator 

122 FrailScore Calculated Frailty Score 

75 Gut_motility_stimulator_Dys Beers Criteria Medication Class, Rx Days 

74 Gut_motility_stimulator_Rx Beers Criteria Medication Class, # Rx 

106 heartfail Charlson Comorbidity Score Indicator 

21 Hep Elixhauser Comorbidity Indicator 
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Col# Variable Label 

119 HHBed Frailty Measure Indicator 

20 HIV Elixhauser Comorbidity Indicator 

121 HomeO2 Frailty Measure Indicator 

77 Hormones_Dys Beers Criteria Medication Class, Rx Days 

76 Hormones_Rx Beers Criteria Medication Class, # Rx 

124 HospitalAdm Hospital Admissions, Binary Indicator 

33 Hyp Elixhauser Comorbidity Indicator 

35 LateStroke Elixhauser Comorbidity Indicator 

97 Laxative_Dys Beers Criteria Medication Class, Rx Days 

96 Laxative_Rx Beers Criteria Medication Class, # Rx 

107 lipid Charlson Comorbidity Score Indicator 

125 Male Gender, Male 

2 MEMDAYS Member Days 

27 MS Elixhauser Comorbidity Indicator 

6 MSA Metropolitan Statistical Area 

157 Narcotic Narcotic, Binary Indicator 

81 Narcotic_Dys Beers Criteria Medication Class, Rx Days 

80 Narcotic_Rx Beers Criteria Medication Class, # Rx 

85 Nonbarbiturate_sedative_hypn_Dys Beers Criteria Medication Class, Rx Days 

84 Nonbarbiturate_sedative_hypn_Rx Beers Criteria Medication Class, # Rx 

87 Nonbenzodiazepine_sedative_Dys Beers Criteria Medication Class, Rx Days 

86 Nonbenzodiazepine_sedative_Rx Beers Criteria Medication Class, # Rx 

83 NonCOX_NSAIDs_Dys Beers Criteria Medication Class, Rx Days 

82 NonCOX_NSAIDs_Rx Beers Criteria Medication Class, # Rx 

79 NSAIDs_Dys Beers Criteria Medication Class, Rx Days 

78 NSAIDs_Rx Beers Criteria Medication Class, # Rx 

154 OtherBeers Other Beers Medication Class, Categorical, Study Specific 

29 Otitis Elixhauser Comorbidity Indicator 

37 Paral Elixhauser Comorbidity Indicator 

103 paraplegic Charlson Comorbidity Score Indicator 

26 Parkin Elixhauser Comorbidity Indicator 

110 pd Charlson Comorbidity Score Indicator 

99 Phenothiazines_Dys Beers Criteria Medication Class, Rx Days 

98 Phenothiazines_Rx Beers Criteria Medication Class, # Rx 

111 podiatry Frailty Measure Indicator 

136 pscore Estimated Probability 

108 psychiatric Charlson Comorbidity Score Indicator 

9 PulmHeart Elixhauser Comorbidity Indicator 

17 RA Elixhauser Comorbidity Indicator 

7 REGION Region, Categorical 
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Col# Variable Label 

127 Region_1 Region, Northeast, Binary Indicator 

128 Region_2 Region, North Central, Binary Indicator 

129 Region_3 Region, South, Binary Indicator 

130 Region_4 Region, West, Binary Indicator 

131 Region_5 Region, Unknown, Binary Indicator 

112 rehab Frailty Measure Indicator 

25 Scizo Elixhauser Comorbidity Indicator 

24 Senile Elixhauser Comorbidity Indicator 

115 sepsis Charlson Comorbidity Score Indicator 

4 SEX Gender of Patient 

23 Sicle Elixhauser Comorbidity Indicator 

89 Skeletal_muscle_relaxants_Dys Beers Criteria Medication Class, Rx Days 

88 Skeletal_muscle_relaxants_Rx Beers Criteria Medication Class, # Rx 

114 skinulcer Charlson Comorbidity Score Indicator 

34 SLE Elixhauser Comorbidity Indicator 

145 Studycost Total Cost, Inpatient+Outpatient+Rx 

36 SUlcer Elixhauser Comorbidity Indicator 

91 Sulfonylureas_Dys Beers Criteria Medication Class, Rx Days 

90 Sulfonylureas_Rx Beers Criteria Medication Class, # Rx 

142 SumIP13 Total Cost, Inpatient 

141 SumOP13 Total Cost, Outpatient 

140 SumRx13 Total Cost, Rx 

93 Tertiary_TCAs_Dys Beers Criteria Medication Class, Rx Days 

92 Tertiary_TCAs_Rx Beers Criteria Medication Class, # Rx 

31 Valve Elixhauser Comorbidity Indicator 

95 Vasodilator_Dys Beers Criteria Medication Class, Rx Days 

94 Vasodilator_Rx Beers Criteria Medication Class, # Rx 

30 Vertigo Elixhauser Comorbidity Indicator 

117 weakness Frailty Measure Indicator 

135 _LEVEL_ Response Value 

137 _Lps Logit of Propensity Score 

139 _MatchID Matched ID number 

138 _MATCHWGT_ Matched obs ATT weight 
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Table 19 

List of ICD-9 codes for Charlson Score Index indicator variables 

Charlson Comorbidity Condition ICD-9 Code Range/Values 

AIDS/HIV 042.x - 044.x 

Any malignancy, except malignant 

neoplasm of skin 140.x - 172.x, 174.x - 195.8, 200.x - 208.x, 238.6 

Cerebrovascular disease 362.34, 430.x - 438.x 

Chronic pulmonary disease 416.8, 416.9, 490.x - 505.x, 506.4, 508.1, 508.8 

Congestive heart failure 

398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 

404.91, 404.93, 425.4 - 425.9, 428.x 

Dementia 290.x, 294.1, 331.2 

Diabetes with chronic complication 250.4 - 250.7 

Diabetes without chronic complication 250.0 - 250.3, 250.8, 250.9 

Hemiplegia or paraplegia 334.1, 342.x, 343.x, 344.0 - 344.6, 344.9 

Metastatic solid tumour 196.x - 199.x 

Mild liver disease 

070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.6, 070.9, 570.x, 

571.x, 573.3, 573.4, 573.8, 573.9, V42.7 

Moderate or severe liver disease 456.0 - 456.2, 572.2- 572.8 

Myocardial infarction 410.x, 412.x 

Peptic ulcer disease 531.x - 534.x 

Peripheral vascular disease 093.0, 437.3, 440.x, 441.x, 443.1 - 443.9, 447.1, 557.1, 557.9, V43.4 

Renal disease 

403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 

404.93, 582.x, 583.0 - 583.7, 585.x, 586.x, 588.0, V42.0, V45.1, 

V56.x 

Rheumatic disease 446.5, 710.0 - 710.4, 714.0 - 714.2, 714.8, 725.x 

Source: (Quan et al., 2005) 
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Table 20 

List of ICD-9 codes for Elixhauser Comorbidity Index indicator variables 

Elixhauser Condition ICD-9 Code Range/Values 

AIDS/HIV 042.x - 044.x 

Alcohol abuse 

265.2, 291.1 - 291.3, 291.5 - 291.9, 303.0, 303.9, 305.0, 357.5, 

425.5, 535.3, 571.0 - 571.3, 980.x, V11.3 

Blood loss anemia 280.0 

Cardiac arrhythmias 

426.0, 426.13, 426.7, 426.9, 426.10, 426.12, 427.0 - 427.4, 427.6 - 

427.9, 785.0, 996.01, 996.04, V45.0, V53.3 

Chronic pulmonary disease 416.8, 416.9, 490.x - 505.x, 506.4, 508.1, 508.8 

Coagulopathy 286.x, 287.1, 287.3 - 287.5 

Congestive heart failure 

398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 

404.91, 404.93, 425.4 - 425.9, 428.x 

Deficiency anemia 280.1 - 280.9, 281.x 

Depression 296.2, 296.3, 296.5, 300.4, 309.x, 311 

Diabetes, complicated 250.4 - 250.9 

Diabetes, uncomplicated 250.0 - 250.3 

Drug abuse 292.x, 304.x, 305.2 - 305.9, V65.42 

Fluid and electrolyte disorders 253.6, 276.x 

Hypertension, complicated 402.x - 405.x 

Hypertension, uncomplicated 401.x 

Hypothyroidism 240.9, 243.x, 244.x, 246.1, 246.8 

Liver disease 

070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.6, 070.9, 456.0 

- 456.2, 570.x, 571.x, 572.2 - 572.8, 573.3, 573.4, 573.8, 573.9, 

V42.7 

Lymphoma 200.x - 202.x, 203.0, 238.6 

Metastatic cancer 196.x - 199.x 

Obesity 278.0 

Other neurological disorders 

331.9, 332.0, 332.1, 333.4, 333.5, 333.92, 334.x - 335.x, 336.2, 

340.x, 341.x, 345.x, 348.1, 348.3, 780.3, 784.3 

Paralysis 334.1, 342.x, 343.x, 344.0 - 344.6, 344.9 

Peptic ulcer disease, excluding bleeding 531.7, 531.9, 532.7, 532.9, 533.7, 533.9, 534.7, 534.9 

Peripheral vascular disorders 093.0, 437.3, 440.x, 441.x, 443.1 - 443.9, 447.1, 557.1, 557.9, V43.4 

Psychoses 293.8, 295.x, 296.04, 296.14, 296.44, 296.54, 297.x, 298.x 

Pulmonary circulation disorders 415.0, 415.1, 416.x, 417.0, 417.8, 417.9 

Renal failure 

403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 

404.93, 585.x, 586.x, 588.0, V42.0, V45.1, V56.x 

Rheumatoid arthritis 

446.x, 701.0, 710.0 - 710.4, 710.8, 710.9, 711.2, 714.x, 719.3, 720.x, 

725.x, 728.5, 728.89, 729.30 

Solid tumor without metastasis 140.x - 172.x, 174.x - 195.x 

Valvular disease 093.2, 394.x - 397.x, 424.x, 746.3 - 746.6, V42.2, V43.3 

Weight loss 260.x - 263.x, 783.2, 799.4 

Source: (Quan et al., 2005) 
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